Abstract:
A wheel suspension comprising a vehicle body, a wheel movably articulated on the vehicle body via a control arm assembly. A wheel carrier and at least one helical pressure spring which is supported on the vehicle body on the one hand and on the wheel carrier or the control arm assembly on the other hand. The spring stiffness of the vehicle body support referred to the wheel contact point of the wheel can be controlled so as to be variable. Use is made of a helical pressure spring assembly whose force action line deviates from the geometric spring center line. Furthermore, there are provided rotational means for the 3-dimensional adjustment of the force action line relative to the geometric spring center line.
Abstract:
A forward-control counterweight fork-lift truck has a liftable and tiltable load-lifting device (1), a traction drive, operating drives, and a steering drive. A calculation model (D) based on vehicle-specific information is stored in a control device (SE). A plurality of sensors (S) detect physical variables (V, R, H, M, L, WM, WL, BL, BQ, G) relevant to the tipping behavior of the industrial truck. The control device (SE) determines a driving and load state (Z) based on the detected physical variables (V, R, H, M, L, WM, WL, BL, BQ, G) and the stored calculation model (D) and is operatively connected to the traction drive, the operating drives, and the steering drive such that, depending on the driving and load state (Z) determined, corrective interventions (K1, K2) which maintain or increase the tipping stability can be carried out.
Abstract:
A wheel suspension comprising a vehicle body, a wheel movably articulated on the vehicle body via a control arm assembly. A wheel carrier and at least one helical pressure spring which is supported on the vehicle body on the one hand and on the wheel carrier or the control arm assembly on the other hand. The spring stiffness of the vehicle body support referred to the wheel contact point of the wheel can be controlled so as to be variable. Use is made of a helical pressure spring assembly whose force action line deviates from the geometric spring center line. Furthermore, there are provided rotational means for the 3-dimensional adjustment of the force action line relative to the geometric spring center line.
Abstract:
The invention relates to a rear wheel suspension, which has a spring, preferably embodied as a coil spring that has a geometric spring center line and a line of action of force, the coil spring being supported in an upper and a lower spring mount. In order to reduce the forces imposed on structural elements of the rear wheel suspension, the proposal is that the spring be embodied and arranged in such a way that the line of action of force thereof has an amount of tilt during an inward deflection which is different from an amount of tilt during an outward deflection.
Abstract:
A forward-control counterweight fork-lift truck has a liftable and tiltable load-lifting device (1), a traction drive, operating drives, and a steering drive. A calculation model (D) based on vehicle-specific information is stored in a control device (SE). A plurality of sensors (S) detect physical variables (V, R, H, M, L, WM, WL, BL, BQ, G) relevant to the tipping behavior of the industrial truck. The control device (SE) determines a driving and load state (Z) based on the detected physical variables (V, R, H, M, L, WM, WL, BL, BQ, G) and the stored calculation model (D) and is operatively connected to the traction drive, the operating drives, and the steering drive such that, depending on the driving and load state (Z) determined, corrective interventions (K1, K2) which maintain or increase the tipping stability can be carried out.
Abstract:
The invention concerns a wheel suspension system for the non-steered wheels (16) of a motor vehicle, with a twist beam axle (2) which comprises two wheel-supporting trailing arms (3, 13) pivotably mounted on a motor vehicle body (15) and a cross member (6) connecting the trailing arms (3, 13) together, and a Watt linkage (8) also connecting the trailing arms (3, 13) together, at least one articulated holder (10) being integrated in each trailing arm (3, 13) itself for articulated coupling of the Watt linkage (8).
Abstract:
The invention concerns a wheel suspension system for the non-steered wheels (16) of a motor vehicle, with a twist beam axle (2) which comprises two wheel-supporting trailing arms (3, 13) pivotably mounted on a motor vehicle body (15) and a cross member (6) connecting the trailing arms (3, 13) together, and a Watt linkage (8) also connecting the trailing arms (3, 13) together, at least one articulated holder (10) being integrated in each trailing arm (3, 13) itself for articulated coupling of the Watt linkage (8).
Abstract:
A forward-control counterweight fork-lift truck has a liftable and tiltable load-lifting device (1), a traction drive and operating drives for the movement of the load-lifting device (1). A calculation model (D) is stored in a control device (SE), to which directly or indirectly acting sensors (S) are connected for detecting the lifting load (L), the lifting height (H), the tilting angle (WM), the load torque (M), the direction of travel (R), the driving speed (V), and the steering angle (WL). The control device (SE) is designed to determine a driving and load state (Z) based on the detected physical variables (L, H, WM, M, R, V, WL) and the stored calculation model (D) and is operatively connected to the traction drive and the operating drives. Depending on the driving and load state (Z) determined, the operating speed, starting and braking acceleration, and driving speed are each reduced.
Abstract:
A forward-control counterweight fork-lift truck has a liftable and tiltable load-lifting device (1), a traction drive and operating drives for the movement of the load-lifting device (1). A calculation model (D) is stored in a control device (SE), to which directly or indirectly acting sensors (S) are connected for detecting the lifting load (L), the lifting height (H), the tilting angle (WM), the load torque (M), the direction of travel (R), the driving speed (V), and the steering angle (WL). The control device (SE) is designed to determine a driving and load state (Z) based on the detected physical variables (L, H, WM, M, R, V, WL) and the stored calculation model (D) and is operatively connected to the traction drive and the operating drives. Depending on the driving and load state (Z) determined, the operating speed, starting and braking acceleration, and driving speed are each reduced.