摘要:
A method for engineering and utilizing large DNA vectors to target, via homologous recombination, and modify, in any desirable fashion, endogenous genes and chromosomal loci in eukaryotic cells. These large DNA targeting vectors for eukaryotic cells, termed LTVECs, are derived from fragments of cloned genomic DNA larger than those typically used by other approaches intended to perform homologous targeting in eukaryotic cells. Also provided is a rapid and convenient method of detecting eukaryotic cells in which the LTVEC has correctly targeted and modified the desired endogenous gene(s) or chromosomal locus (loci) as well as the use of these cells to generate organisms bearing the genetic modification.
摘要:
A fully human antibody or antigen-binding fragment of a human antibody that specifically binds and inhibits or interferes with at least one activity of human angiopoietin-like protein 3 (hANGPTL3) is provided. The human anti-hANGPTL3 antibodies are useful in treating diseases or disorders associated with ANGPTL3, such as hyperlipidemia, hyperlipoproteinemia and dyslipidemia, including hypertriglyceridemia, hypercholesterolemia, chylomicronemia, and so forth. Furthermore, the anti-hANGPTL3 antibodies can be administered to a subject in need thereof to prevent or treat diseases or disorders, for which abnormal lipid metabolism is a risk factor. Such diseases or disorders include cardiovascular diseases, such as atherosclerosis and coronary artery diseases; acute pancreatitis; nonalcoholic steatohepatitis (NASH); diabetes; obesity; and the like.
摘要:
Genetically modified non-human animals and methods and compositions for making and using them are provided, wherein the genetic modification comprises a humanization of an extracellular loop of an endogenous NaV channel gene, in particular a humanization of the one or more extracellular pore loops of a NaV1.7 channel protein. Genetically modified non-human animals are also provided, wherein the genetic modification comprises replacement of an endogenous NaV channel gene, in particular a replacement of the endogenous NaV1.7 gene with a human NaV1.7 gene, and wherein the genetically modified non-human animals are capable of generating action potentials and communicating through the excitable cells of the genetically modified non-human animals via the expressed human or humanized NaV1.7 protein the surface of the excitable cells. Genetically modified mice are described, including mice that express the human or humanized NaV1.7 gene from the endogenous NaV1.7 locus, and wherein the mice comprise functional β-subunits.
摘要:
A method for engineering and utilizing large DNA vectors to target, via homologous recombination, and modify, in any desirable fashion, endogenous genes and chromosomal loci in eukaryotic cells. These large DNA targeting vectors for eukaryotic cells, termed LTVECs, are derived from fragments of cloned genomic DNA larger than those typically used by other approaches intended to perform homologous targeting in eukaryotic cells. Also provided is a rapid and convenient method of detecting eukaryotic cells in which the LTVEC has correctly targeted and modified the desired endogenous gene(s) or chromosomal locus (loci) as well as the use of these cells to generate organisms bearing the genetic modification.
摘要:
Mice are provided that comprise a reduction or deletion of ADAM6 activity from an endogenous ADAM6 locus, or that lack an endogenous locus encoding a mouse ADAM6 protein, wherein the mice comprise a sequence encoding an ADAM6 or ortholog or homolog or fragment thereof that is functional in a male mouse. In one embodiment, the sequence is an ectopic ADAM6 sequence or a sequence that confers upon a male mouse the ability to generate offspring by mating. Mice and cells with genetically modified immunoglobulin heavy chain loci that comprise an ectopic nucleotide sequence encoding a mouse ADAM6 or functional fragment or homolog or ortholog thereof are also provided.
摘要:
A method for engineering and utilizing large DNA vectors to target, via homologous recombination, and modify, in any desirable fashion, endogenous genes and chromosomal loci in eukaryotic cells. These large DNA targeting vectors for eukaryotic cells, termed LTVECs, are derived from fragments of cloned genomic DNA larger than those typically used by other approaches intended to perform homologous targeting in eukaryotic cells. Also provided is a rapid and convenient method of detecting eukaryotic cells in which the LTVEC has correctly targeted and modified the desired endogenous gene(s) or chromosomal locus (loci) as well as the use of these cells to generate organisms bearing the genetic modification.
摘要:
A method for engineering and utilizing large DNA vectors to target, via homologous recombination, and modify, in any desirable fashion, endogenous genes and chromosomal loci in eukaryotic cells. These large DNA targeting vectors for eukaryotic cells, termed LTVECs, are derived from fragments of cloned genomic DNA larger than those typically used by other approaches intended to perform homologous targeting in eukaryotic cells. Also provided is a rapid and convenient method of detecting eukaryotic cells in which the LTVEC has correctly targeted and modified the desired endogenous gene(s) or chromosomal locus (loci) as well as the use of these cells to generate organisms bearing the genetic modification.
摘要:
A method for engineering and utilizing large DNA vectors to target, via homologous recombination, and modify, in any desirable fashion, endogenous genes and chromosomal loci in eukaryotic cells. These large DNA targeting vectors for eukaryotic cells, termed LTVECs, are derived from fragments of cloned genomic DNA larger than those typically used by other approaches intended to perform homologous targeting in eukaryotic cells. Also provided is a rapid and convenient method of detecting eukaryotic cells in which the LTVEC has correctly targeted and modified the desired endogenous gene(s) or chromosomal locus (loci) as well as the use of these cells to generate organisms bearing the genetic modification.
摘要:
A mouse with a humanization of the mIL-3 gene and the mGM-CSF gene, a knockout of a mRAG gene, and a knockout of a mIl2rg subunit gene; and optionally a humanization of the TPO gene is described. A RAG/Il2rg KO/hTPO knock-in mouse is described. A mouse engrafted with human hematopoietic stem cells (HSCs) that maintains a human immune cell (HIC) population derived from the HSCs and that is infectable by a human pathogen, e.g., S. typhi or M. tuberculosis is described. A mouse that models a human pathogen infection that is poorly modeled in mice is described, e.g., a mouse that models a human mycobacterial infection, wherein the mouse develops one or more granulomas comprising human immune cells. A mouse that comprises a human hematopoietic malignancy that originates from an early human hematopoietic cells is described, e.g., a myeloid leukemia or a myeloproliferative neoplasia.
摘要:
An electroformed sheath for protecting an airfoil includes a sheath body and a mandrel insert is provided. The sheath body includes a leading edge. The sheath body includes a pressure side wall and an opposed suction side wall, which side walls meet at the leading edge and extend away from the leading edge to define a cavity between the side walls. The sheath body includes a head section between the leading edge and the cavity. The mandrel insert is positioned between the pressure side and suction side walls, and includes a generally wedge-shaped geometry. A method for protecting an airfoil includes: 1) securing a mandrel insert to a mandrel; 2) electroplating a sheath body onto the mandrel and the mandrel insert; 3) removing the mandrel from the sheath body so that a sheath cavity is defined within the sheath body; and 4) securing the airfoil within the sheath cavity.