Abstract:
A frequency synthesizer is disclosed. According to one embodiment, the frequency synthesizer includes an input terminal and an output terminal, a loop filter, a digital phase detector, and an analog phase detector. The digital phase detector includes a first input coupled to the input terminal, a second input coupled to the output terminal, and an output coupled to the loop filter, the digital phase detector is configured to operate at a first phase comparison frequency. The analog phase detector includes a first input coupled to the input terminal, a second input coupled to the output terminal, and an output alternating current (AC) coupled to the loop filter, the analog phase detector is configured to operate at a second phase comparison frequency. The first phase comparison frequency is different from the second phase comparison frequency.
Abstract:
A synthetic statherin peptide of general formula (I) X1X2X3X4X5X6X7X8X9X10X11X12X13X14X15X16X17X18X19X20X21 as defined herein is provided. The peptide finds application in the treatment of dent disease, dry mouth syndrome and in the formulation of pharmaceutical preparation comprising the peptide.
Abstract:
A frequency synthesizer is disclosed. According to one embodiment, the frequency synthesizer includes an input terminal and an output terminal, a loop filter, a digital phase detector, and an analog phase detector. The digital phase detector includes a first input coupled to the input terminal, a second input coupled to the output terminal, and an output coupled to the loop filter, the digital phase detector configured to operate at a first phase comparison frequency. The analog phase detector included a first input coupled to the input terminal, a second input coupled to the output terminal, and an output alternating current (AC) coupled to the loop filter, the analog phase detector configured to operate at a second phase comparison frequency. The first phase comparison frequency is different from the second phase comparison frequency.
Abstract:
An apparatus and method for efficiently implementing a satellite transceiver system comprises a digital signal processor for providing input signals to a transmitter, a vector modulator for generating a modulated signal from the input signals, and an output amplifier for amplifying the modulated signal to produce a transmit signal. The invention also includes an attenuator that samples the transmit signal to generate an error signal, a mixer that downconverts the error signal to produce a downconverted error signal, a feedback vector demodulator that demodulates the downconverted error signal to generate result signals that contain error information pertaining to the transmit signal. The digital signal processor may then compare the result signals with the input signals to responsively alter the input signals, and thereby correct for distortion in the transmit signal.
Abstract:
A frequency synthesizer is disclosed. According to one embodiment, the frequency synthesizer includes a phase locked loop (PLL) having an analog mixer phase detector and an auxiliary digital frequency detector coupled to the phase locked loop. The PLL may include a programmable divider having an input terminal responsive to an output signal of the frequency synthesizer and having an output terminal coupled to an input terminal of the analog mixer phase detector, a loop filter having an input terminal coupled to an output terminal of the analog mixer phase detector, and a voltage controlled oscillator having a control terminal coupled to an output terminal of the loop filter. The programmable divider may include a direct digital synthesizer.
Abstract:
A system and method for implementing a cellular radio transmitter device comprises a first oscillator device for generating a first oscillator output signal, a second oscillator device for generating a second oscillator output signal, a power amplifier for amplifying the second oscillator output signal to obtain a transmit signal, a mixer device for combining the first oscillator output signal and the transmit signal to produce a mixer output signal, a phase comparator for comparing the mixer output signal and a transmitter input signal and responsively generating a control signal to control the transmit oscillator, and a feedback path for adding the mixer output signal to the transmitter input signal to compensate for distortion present in the transmit signal.