Abstract:
A magnetic head slider including a plurality of rails adapted to face a magnetic disk. Each of the rails has a longitudinal extension direction substantially in a direction of rotation of the magnetic disk, and a protective film is provided on a floating surface of at least one of the rails. A thickness of the protective film at least in a direction transverse to the longitudinal extension direction of the at least one of the rails is not uniform in the transverse direction.
Abstract:
In one embodiment, a magnetic head includes at least one magnetic head element for reading from and/or writing to a magnetic medium, the element having an air bearing surface (ABS) facing toward a magnetic medium, an adhesive film including silicon nitride above the ABS having a characteristic of being formed under a water vapor partial pressure, and a protective film above the adhesive film, the protective film including carbon. Also, in another embodiment, a method includes forming an ABS of a magnetic head, the ABS being a surface of the magnetic head which is closest to a magnetic medium when in use, forming an adhesive film above the ABS of the magnetic head, the adhesive film being formed under a water vapor partial pressure, and forming a protective film above the adhesive film, the protective film including carbon.
Abstract:
Embodiments of the present invention provide a magnetic head suitable for high density recording at a high yield by reducing the thickness of an air-bearing surface protection layer of a magnetic head and suppressing reduction in the signal-to-noise (S/N) ratio of a read element. According to one embodiment, a read element of a magnetic head has a magnetoresistive effect film (TMR film) between a lower magnetic shield layer and an upper magnetic shield layer, and has a refill film and a magnetic domain control film in both sides of the TMR film. The TMR film is configured by a lower metal layer, an antiferromagnetic layer, a ferromagnetic pinned layer, an intermediate layer, a ferromagnetic free layer, and an upper metal layer. An air-bearing surface protection layer, including a silicon nitride film about 2.0 nm in thickness, is formed on a recording medium facing surface of the TMR film. Since silicon in the silicon nitride film is inactivated by nitrogen, the silicon does not damage the TMR film. Therefore, noise of the read element can be controlled to be at a low level.
Abstract:
According to one embodiment, a method for manufacturing a magnetic device includes forming a protective film above a structure, wherein at least one of hydrogen and water vapor are introduced into a formation chamber during formation of the protective film. In-another embodiment, a magnetic head includes at least one of: a read element, a write element, a heater element, and a resistance detector element above a substrate, conductive terminals for each of the at least one of: the read element, the write element, and the heater element, and a protective film above the at least one of: the read element, the write element, and the heater element, wherein the protective film comprises at least one of hydrogen and water vapor.
Abstract:
A method of manufacturing a magnetic head slider for a magnetic head and the magnetic slider wherein the slider has non-linear rails formed in a floating surface thereof by processing including one of reactive ion etching, sputter etching and an ion milling, and side walls of the non-linear rails are polished after formation of the non-linear rails by the processing.
Abstract:
For removing re-deposited particulates produced during an etching process of a magnetic head slider and forming a minute chamfered portion, a polishing process is carried out by using polishing cloth such as non-woven polyester fabric after having formed rails of non-linear shape on a floating surface by the etching process. Thus, the re-deposited particulates produced during the etching process are removed, whereby the reliability of the floating characteristic of magnetic head is improved.
Abstract:
In one embodiment, a magnetic head includes at least one magnetic head element for reading from and/or writing to a magnetic medium, the element having an air bearing surface (ABS) facing toward a magnetic medium, an adhesive film including silicon nitride above the ABS having a characteristic of being formed under a water vapor partial pressure, and a protective film above the adhesive film, the protective film including carbon. Also, in another embodiment, a method includes forming an ABS of a magnetic head, the ABS being a surface of the magnetic head which is closest to a magnetic medium when in use, forming an adhesive film above the ABS of the magnetic head, the adhesive film being formed under a water vapor partial pressure, and forming a protective film above the adhesive film, the protective film including carbon.
Abstract:
There is provided the magnetic head slider including a reader, a writer, and a heater. A contact surface coming into contact with a medium surface when power is applied to the heater, and a step surface formed on both sides of the contact surface, through the intermediary of a step part, are provided on respective surfaces of the upper shield layer, the lower shield layer, the lower magnetic pole, the shield layer, and the return pole, the respective surfaces being opposite to a disk. And the respective contact surfaces of the upper shield layer, the lower shield layer, the lower magnetic pole, the shield layer, and the return pole are configured so as to be substantially circular in shape, as a whole, thereby providing a cylindrical small pad on a surface of a magnetic head slider, opposite to the disk.
Abstract:
A recording/reproducing apparatus has a control unit in which a position to pause and a time to pause are set for data which has been recorded on a recording medium and is continuous with respect to time, and when a current position reaches the set pause position during the reproduction of the data, the reproduction of the data is paused for the set pause period of time.