Abstract:
An integrated circuit includes a global power supply node. A first power domain has a first power management circuit, which includes a local power supply node. A first power control circuit is capable of receiving an input signal. A second power control circuit has a higher current capacity than the first power control circuit. The first power control circuit and the second power control circuit are coupled to the local power supply node and the global power supply node. The input signal is configured to initiate a power sequence, e.g., a power up process or a power down process, in the first power control circuit. A first control signal generated by the first power control circuit is configured to initiate a power sequence in the second power control circuit.
Abstract:
A sense amplifier scheme for SRAM is disclosed. In accordance with one of the embodiments of the present application, a sense amplifier circuit includes a bit line, a sense amplifier output, a power supply node having a power supply voltage, a keeper circuit including an NMOS transistor, and a noise threshold control circuit. The keeper circuit is sized to supply sufficient current to compensate a leakage current of the bit line and maintains a voltage level of the bit line and the noise threshold control circuit lowers a trip point of the sense amplifier output.
Abstract:
A method of controlling a plurality of memory cells in a row. The method includes controlling a switching element using at least one write word line signal to raise a voltage of a node connected to the plurality of memory cells in the row when the plurality of memory cells in the row operate in a first mode. The method further includes controlling at least one transistor using the at least one write word line signal to connect the plurality of memory cells in the row to a reference voltage when the plurality of memory cells in the row operate in a second mode.
Abstract:
A sense amplifier having compensation circuitry is described. The compensation circuitry includes at least one pair of compensation transistors. When compensation is desired, one or a combination of the bulk of the at least one pair of compensation transistors is provided with one or a combination of compensation voltages.
Abstract:
A method of controlling a plurality of memory cells in a row. The method includes controlling a switching element using at least one write word line signal to raise a voltage of a node connected to the plurality of memory cells in the row when the plurality of memory cells in the row operate in a first mode. The method further includes controlling at least one transistor using the at least one write word line signal to connect the plurality of memory cells in the row to a reference voltage when the plurality of memory cells in the row operate in a second mode.
Abstract:
A circuit comprises a plurality of memory cells in a row, at least one write word line, and a write support circuit coupled to the at least one write word line and to the plurality of memory cells in the row. The write support circuit includes a first current path and at least one second current path. A current path of the at least one second current path corresponds to a respective write word line of the at least one write word line. A write word line of the at least one write word line is configured to select the first current path when the plurality of memory cells in the row operates in a first mode, and to select a second current path of the at least one second current path when the plurality of memory cells in the row operates in a second mode.
Abstract:
The memory building blocks can be used in conjunction with ASIC automatic design tools to generate a memory macro (e.g., a memory array) using a known ASIC design flow including, for example, register transfer level (RTL), synthesis, automatic place and route (APR) and timing analysis.
Abstract:
A circuit comprises a plurality of memory cells in a row, at least one write word line, and a write support circuit coupled to the at least one write word line and to the plurality of memory cells in the row. The write support circuit includes a first current path and at least one second current path. A current path of the at least one second current path corresponds to a respective write word line of the at least one write word line. A write word line of the at least one write word line is configured to select the first current path when the plurality of memory cells in the row operates in a first mode, and to select a second current path of the at least one second current path when the plurality of memory cells in the row operates in a second mode.
Abstract:
An integrated circuit includes a global power supply node. A first power domain has a first power management circuit, which includes a local power supply node. A first power control circuit is capable of receiving an input signal. A second power control circuit has a higher current capacity than the first power control circuit. The first power control circuit and the second power control circuit are coupled to the local power supply node and the global power supply node. The input signal is configured to initiate a power sequence, e.g., a power up process or a power down process, in the first power control circuit. A first control signal generated by the first power control circuit is configured to initiate a power sequence in the second power control circuit.
Abstract:
An integrated circuit includes a global power supply node. A first power domain has a first power management circuit, which includes a local power supply node. A first power control circuit is capable of receiving an input signal. A second power control circuit has a higher current capacity than the first power control circuit. The first power control circuit and the second power control circuit are coupled to the local power supply node and the global power supply node. The input signal is configured to initiate a power sequence, e.g., a power up process or a power down process, in the first power control circuit. A first control signal generated by the first power control circuit is configured to initiate a power sequence in the second power control circuit.