Abstract:
A bottle is disclosed that includes a product stored therein. It is configured to be removably engaged with a docking station in an inverted arrangement to be activated by the docking station and heat the product. The bottle may include a pump structure (e.g. in the form of a bellows), or be a squeezable bottle, or be a bowable bottle, or have other pumping features. Structures are provided to prevent drool after use, to help apply the heated product to the skin, and to insure proper heating and dispensing. Also disclosed are combined docking stations and bottles where the bottle is positioned in an inverted manner, and methods for using these devices.
Abstract:
The present invention provides a slow release nitrogen fertilizer and a process for manufacturing the fertilizer, wherein the fly ash from coal-fired power plants that may contain high concentration of mercury and carbon is used as the main feedstock and the carbonitridation reaction is used to convert fly ash to silicon aluminum oxynitride in the presence of nitrogen gas and carbon. Silicon aluminum oxynitride is subsequently used as a slow release nitrogen fertilizer. The mercury contained in the fly ash is recovered before carbonitridation reaction takes place.
Abstract:
Ceramic structures such as catalyst supports or combustion exhaust filters that incorporate combinations of high temperature phase change materials, and methods for determining the thermal history of such ceramic structures, by disposing the phase change materials on or within the structures and subsequently detecting the presence or absence of phase changes in the materials after exposure to high temperatures.
Abstract:
A turnover device for turning over a substrate comprises a motor and a tumbler driven by the motor to rotate. The tumbler is provided with a transmission mechanism thereon and connected to an upper turntable and a lower turntable with the transmission mechanism, the tumbler can drive the upper turntable and the lower turntable to rotate, the transmission mechanism can drive the upper turntable and the lower turntable to move toward each other, and the substrate to be turned over is disposed between the upper turntable and the lower turntable.
Abstract:
In a method of manufacturing a liquid crystal display, first, a panel assembly structure including a first substrate, a second substrate and several sealants connecting inner surfaces of the first and second substrate is provided. The first substrate includes several third substrates. The second substrate includes several fourth substrates corresponding to the third substrates, respectively. Each third substrate, the corresponding fourth substrate and the corresponding sealant form a panel. First and second polarizers are adhered correspondingly to outer surfaces of the third and fourth substrates. The panels are separated after the adherence of the first and second polarizers.
Abstract:
A bottle is disclosed that includes a product stored therein. It is configured to be removably engaged with a docking station in an inverted arrangement to be activated by the docking station and heat the product. The bottle may include a pump structure (e.g. in the form of a bellows), or be a squeezable bottle, or be a bowable bottle, or have other pumping features. Structures are provided to prevent drool after use, to help apply the heated product to the skin, and to insure proper heating and dispensing. Also disclosed are combined docking stations and bottles where the bottle is positioned in an inverted manner, and methods for using these devices.
Abstract:
A method for classifying a substrate first provides the substrate and its corresponding inspection map. Then, a database having a plurality of specification data is provided. After that, the inspection map is compared with each of the specification data so as to find the specification data coinciding with the inspection map. Finally, the substrate is defined according to the layout of active areas coinciding with the inspection map, and then the substrate is classified and stored.
Abstract:
A light-emitting apparatus includes a substrate, at least one light emitting diode (LED) die, a sealant align layer, and a first sealant. The substrate has a die disposing area. The LED die is disposed on the die disposing area. The sealant align layer is disposed on the substrate. The first sealant at least partially covers the LED die and contacts with the sealant align layer. The light-emitting apparatus can avoid the light emitted from the LED die to be blocked and can have higher light efficiency.
Abstract:
A bio-based coating for a building automatically transmits or reflects heat gain from infrared sunlight. The coating is composed of bio-based polymerized oil and a catalyst that is also a thermochromic material. The catalyst reduces the temperature for polymerization of the oil to create a suspension that forms a hardened mixture when cooled below about 100 degrees Centigrade. The thermochromic properties of the catalyst are operable to switch the hardened mixture from transparent to reflective of infrared light when the temperature rises above a switching temperature in an approximate range of 18 degrees Centigrade to 35 degrees Centigrade. The method of using the coating involves spraying a hot bio-based coating on the roof surface and allowing it to cool. The method of making involves heating the suspension to a reaction temperature, holding at the reaction temperature, and, introducing an air flow through the mixture at the reaction temperature.
Abstract:
A chamber configured to confine a chemical reaction producing liquid biodiesel fuel from a liquid reactant mixture containing oil. The chamber comprises a membrane wall having a pore size capable of allowing flow of liquid biodiesel fuel through the membrane wall and retaining unreacted oil within the chamber. The membrane wall is further layered with one or more heterogeneous coatings of solid particles operable to catalyze the chemical reaction producing liquid biodiesel fuel from the liquid reactant mixture. Most of solid particles have a dimension larger than the pore size of the membrane wall so that they do not enter and clog the pores. Optionally, there are two coatings comprising a basic catalyst for a transesterification reaction and an acidic catalyst for an esterification reaction.