摘要:
Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
摘要:
Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
摘要:
An adaptive control system for an electric motor has energization circuitry connected to phase windings of the motor for energization thereof and a controller for generating a control signal corresponding to a profile of an excitation current. The control signal is applied to the energization circuitry to control energization of the phase windings. The energization circuitry provides the excitation current to the phase windings from a power supply. For a present combination of torque and speed, the controller adaptively determine the profile of the excitation current optimal for achieving a particular motor control objective. Excitation current profiles may be optimized to achieve maximum efficiency, maximum torque, minimum torque ripple, minimum core loss, etc.
摘要:
The present invention offers a novel control system for a multiphase motor. The control system involves energization circuitry for energizing each phase winding, and a control circuit for defining phase currents for individual phases of the motor to generate control signals applied to the energization circuitry for energization of the phase windings. When at least one phase of the motor fails, a mode selection circuit enables the control circuit to operate either in a non-correction mode or in a fault-correction mode. In the non-correction mode of operation, phase currents for phases that remain operational are maintained unmodified. In the fault-correction mode, the phase currents for the remaining phases are modified in accordance with pre-set parameters.
摘要:
A control system for a multiphase permanent magnet motor compensates for physical variations among individual motor phase circuit elements. The control system successively develops a control voltage for switched energization of the motor phase windings that is closely matched with particular parameters of the corresponding windings. The system can be applied to a motor in which each stator phase component comprises a ferromagnetically isolated stator electromagnet, the electromagnet core elements being separated from direct contact with each other and formed with separate phase windings. A digital signal processor may be utilized that applies an algorithm incorporating the parameters as constant values, the parameters for a particular phase being accessed for generating the appropriate control signals for energizing that phase.
摘要:
A rotary electric motor has a stator with a plurality of separate and ferromagnetically isolated electromagnet core segments disposed coaxially about an axis of rotation. The core segments are supported by a non-ferromagnetic structure. Each core segment has at least three poles aligned in a direction parallel to the axis. Windings are formed on portions linking the poles so that, when energized, the center pole forms a magnetic polarity opposite to the magnetic polarity of the other poles. The rotor comprises a plurality of axial rows of permanent magnets disposed circumferentially along the air gap. Each axial row of rotor magnets comprises a center permanent magnet of one magnetic polarity and, at each axial side thereof, a permanent magnet of a magnetic polarity opposite to the polarity of the center magnet.
摘要:
A rotary electric motor comprises a rotor having a plurality of permanent magnet elements disposed in an annular ring configuration about an axis of rotation, the magnet elements successively alternating in magnetic polarity along an inner annular surface, and a stator spaced from the rotor by a radial air gap. The stator includes a plurality of magnetic core segments having respective coils wound thereon to form stator windings, the core segments separated from direct contact with each other and disposed along the radial air gap. Each stator segment comprises a pair of poles aligned with each other in a direction parallel to the axis of rotation. Thus the stator comprises a first set of stator poles in radial alignment and an axially displaced second set of stator poles in radial alignment.
摘要:
Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
摘要:
Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
摘要:
Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.