摘要:
A medical sensor may be adapted to prevent unwanted light and electrical interference from corrupting physiological measurements. Sensors are provided with features that reduce the amount of outside light or shunted light that impinge the detecting elements of the sensor. The sensor is adapted to reduce crosstalk between electrical signals, increasing the accuracy of measurements. The sensor is also adapted to reduce the effect of outside light or shunted light on pulse oximetry measurements.
摘要:
A device and method for reducing crosstalk between wires is provided. The method includes spatially separating first and second sets of wires. A device is disposed relative to the first and second sets of wires to maintain the spatial separation. The method also comprises coupling pins to the first and second sets of wires. Additionally, the method includes covering the device with a connector housing.
摘要:
A pulse oximeter method and apparatus which provides (1) a notch filter at a distance between a modulation frequency and a common multiple of commonly used power line frequencies (50, 60, 100 and 120) and also (2) a demodulation frequency greater than a highest pulse rate of a person and lower than any harmonic of 50, 60, 100 or 120 Hz, to filter ambient light interference, while choosing an optimum demodulation frequency that avoids interference from the notch filter or from harmonics of the line interference. Also, ambient light for any low frequency interference, such as power line interference, is measured both before and after each of the light emitter wavelengths and the average of the ambient light is then subtracted from the detected signal.
摘要:
An oximeter sensor adapter which allows a sensor without a resistor in parallel with its LEDs to operate with an oximeter expecting such a resistor in parallel. The adapter has a switching circuit which has inputs connected to the LED drive outputs of the oximeter. The switching circuit has two pairs of outputs, one connected to the LED drive lines of the sensor, and the other connected to a resistor in the adapter itself. The switching circuit is controlled by a sensing circuit which senses when a signal on the input lines drops below a predetermined level, such as 0.5 volts. The sensing circuit, in response to a low voltage (corresponding to an attempt to read a resistor in parallel with the LEDs), will provide a signal to a switching circuit. The switching circuit will switch the resistor onto the input lines so that it can be read. When a higher voltage returns to the input lines, the switching circuit switches back to the LEDs themselves.
摘要:
An adapter which actively connects a 2-lead oximeter probe or monitor to a 3-lead monitor or probe. This is done actively, with the alternating drive signals from the oximeter monitor providing a control signal for switching the adapter connections. The adapter connections are preferably made with diodes, transistors, or other active devices.
摘要:
A pulse oximeter method and apparatus which provides (1) a notch filter at a distance between a modulation frequency and a common multiple of commonly used power line frequencies (50, 60, 100 and 120) and also (2) a demodulation frequency greater than a highest pulse rate of a person and lower than any harmonic of 50, 60, 100 or 120 Hz, to filter ambient light interference, while choosing an optimum demodulation frequency that avoids interference from the notch filter or from harmonics of the line interference. Also, ambient light for any low frequency interference, such as power line interference, is measured both before and after each of the light emitter wavelengths and the average of the ambient light is then subtracted from the detected signal.
摘要:
A medical sensor may be adapted to prevent unwanted light and electrical interference from corrupting physiological measurements. Sensors are provided with features that reduce the amount of outside light or shunted light that impinge the detecting elements of the sensor. The sensor is adapted to reduce crosstalk between electrical signals, increasing the accuracy of measurements. The sensor is also adapted to reduce the effect of outside light or shunted light on pulse oximetry measurements.
摘要:
A method and apparatus for reducing cross-talk in an oximeter. The oximeter includes a band pass filter. The amount of cross-talk through the band pass filter is estimated. Based on this estimate, the corner frequencies of the band pass filter are adjusted when it is designed to minimize the cross-talk. In one embodiment, a calibration mode is performed when a sensor is attached to the oximeter. In the calibration mode, the signals are measured with first only the red LED on and then with only the IR LED on. Any signal measured in the off channel is assumed to be a result of cross-talk from the other channel. The magnitude of the cross-talk is determined as a percentage, and subsequently the percentage is multiplied by the actual signal and subtracted from the other LED signal as cross-talk compensation.
摘要:
A method and apparatus for providing a substantially real-time representation of an analog representation of a physiological signal is provided. The waveform signal from the sensor is converted into digital form. A delta-sigma modulator is used as a simple Digital-to-analog Converter (DAC). The output can then be provided through a simple hardware filter to give an analog output signal in nearly real-time, which can be used for other instruments, synchronization, display, etc.
摘要:
A pulse oximeter method and apparatus which provides (1) a notch filter at a distance between a modulation frequency and a common multiple of commonly used power line frequencies (50, 60, 100 and 120) and also (2) a demodulation frequency greater than a highest pulse rate of a person and lower than any harmonic of 50, 60, 100 or 120 Hz, to filter ambient light interference, while choosing an optimum demodulation frequency that avoids interference from the notch filter or from harmonics of the line interference. Also, ambient light for any low frequency interference, such as power line interference, is measured both before and after each of the light emitter wavelengths and the average of the ambient light is then subtracted from the detected signal.