Abstract:
A process is described for preparing a water-soluble sulphonated dispersant from a petroleum hydrocracking residue comprising: contacting a petroleum hydrocracking residue boiling above 524.degree. C. with concentrated sulphuric acid, oleum or sulphur trioxide to form a sulphonated mixture containing water soluble and water insoluble products, and separating the water soluble sulphonated product from the mixture. The mixture of water soluble and water insoluble sulphonated products is neutralized with alkali and evaporated to dryness, after which the dried mixture is extracted with alcohol to leave a water soluble product. The product can be used as a water reducer or superplasticizer in concrete.
Abstract:
A novel catalyst has been provided for the selective hydrogenation of benzene in gasoline. The catalyst mixture comprises a water-soluble, organo-metallic, selective benzene hydrogenation catalyst comprising catalytically-active mixture of (A) M[L].sub.x [X].sub.y wherein M is a metal selected from the group consisting of Cr, Fe, Co, Ni, Mo, Ru, Rh, Pd, Ta, W, Re, Os, Ir, Pt, La and Ce; L is an aromatic hydrocarbon, e.g., benzene, diphenyl, etc., or a diaromatic hydrocarbon, e.g., naphthalene; X is a halogen; x is an integer from 1 to 10 inclusive; and y is an integer from 1 to 10 inclusive; and (B) tris(triphenylphosphine)rhodium(I)halide or tris(triphenylphosphine)ruthenium(I)halide. In use the process comprises admixing the gasoline with water. The above-identified water-soluble, organo-metallic selective benzene hydrogenation catalyst mixture is then added. A catalytic hydrogenation is then carried out in a hydrogenation zone at a temperature of about 150.degree. to about 245.degree. C. at a pressure of up to about 1000 psi in a hipbasic system of the water and the gasoline. The benzene is selectively solubilized in the water and thus is selectively hydrogenated in the presence of the above-identified water soluble organo-metallic catalyst mixture. The gasoline is then recovered from the hydrogenation zone. This combination of both catalysts was found to produce conversions in excess of 40% which was much greater than either of the catalysts separately and at the lowest effective temperature of 150.degree. C.
Abstract:
Novel bituminous coating compositions, bituminous paving compositions and asphaltic compositions are provided herein. These compositions have, in common, from about 0.1% to about 8% by weight of a nitrogen-containing, adhesion-improving, anti-stripping agent therein. Such agent is a sewage sludge-derived oil, or a fraction thereof, which comprises a mixture of saturated aliphatic hydrocarbons, monoaromatic hydrocarbons, diaromatic hydrocarbons, polyaromatic hydrocarbons, polar compounds and basic, pyridine-soluble compounds having the following elemental composition: nitrogen, about 3.4% to about 5% by weight; oxygen, about 5.8% to about 6.9% by weight; sulfur, about 0.3% to about 0.8% by weight; hydrogen, about 9.7% to about 10.4% by weight; and carbon, about 76.9% to about 79.8% by weight.
Abstract:
A novel asphaltic composition is provided herein. The composition consists of comminuted aged asphaltic pavement material and an effective amount, from about 2% to about 15% by weight of a blend of a soft asphalt cement, a conventional asphalt cement, or a cutback asphalt, with a nitrogen-containing, adhesion-improving, anti-stripping agent comprising a sewage sludge-derived oil, or a fraction thereof, the sewage sludge-derived oil comprising a mixture of saturated aliphatic hydrocarbons, monoaromatic hydrocarbons, diaromatic hydrocarbons, polyaromatic hydrocarbons, polar compounds and basic, pyridene-soluble compounds, having the following elemental chemical composition: nitrogen, about 3.4% to about 5% by weight; oxygen, about 5.8% to about 6.9% by weight; sulfur, about 0.3% to about 0.8% by weight; hydrogen, about 9.7% to about 10.4%, and carbon, about 76.9% to about 79.8%.
Abstract:
A novel process is provided for the selective hydrogenation of benzene in a solution of gasoline and other aromatic organic compounds. The process includes the steps of carrying out the catalytic hydrogenation in a hydrogenation zone at a temperature of about 45.degree. to about 250.degree. C. at a pressure of about 200 psi to about 500 psi in a biphasic system of aqueous and organic liquids the hydrogenation catalyst being water-soluble. The organic liquid is removed from the hydrogenation zone. At least a catalytic amount of the catalyst is retained in the hydrogenation zone. The catalyst above described is also a facet of this invention.
Abstract:
A reverse osmosis process is described for removing alcohols from hydrocarbons, in the additional presence of ethers. Depending on the nature of the membrane used, the methanol can be selectively removed as the membrane permeate or retained as the membrane concentrate. The membrane may be made from cellulose esters, polyethylene, polyvinylchloride, polyvinylidene chloride-polyvinyl chloride, etc.