摘要:
An optical fibre amplifier, laser or superluminescent source, consisting of a chalcogenide glass matrix hosting trivalent rare earth ions and which is doped with oxide in the form of a metallic oxide. The device utilizes the properties of the added oxide to improve the fabrication and efficiency of optical waveguide sources, in particular for applications around 1.3 &mgr;m. Specifically, the oxide broadens the wavelength range for pump absorption, broadens the wavelength range for light emission, increases the device efficiency through a change in lifetime of certain laser levels and modifies properties of the glass to prevent crystallization during fiber fabrication. The device exploits the intentional addition of oxide to improve amplifier, laser, glass and fiber properties.
摘要:
The core of a low phonon energy glass optical fibre is doped with trivalent Dysprosium ions for application as an efficient optical fibre amplifier operating around 1.3 .mu.m. The device utilises the transition .sup.6 H.sub.9/2 -.sup.6 F.sub.11/2 to .sup.6 H.sub.15/2. The low phonon energy (high quantum efficiency) glasses include mixed halides, chalcogenides and chalcohalides. Improvements in efficiency can be achieved by co-doping of the fibre core with Eu.sup.3+ and/or Tb.sup.3+ ions.
摘要:
Optical waveguides are fabricated in glass-ceramic materials utilizing an ion-exchange process to pattern the waveguide at a temperature below the ceramming temperature of the glass-ceramic material. The optical waveguides may include optically-active dopants dispersed preferably within the crystallite phase of the glass-ceramic material.
摘要:
Neodymium-doped fluoroaluminate optical glass has a composition: 35 to 45 mol % AlF3; 5 to 30 mol % RF2, where R is selected from the group consisting of Ca, Mg, Sr and Ba; 5 to 25 mol % MF, where M is selected from the group consisting of Na, Li, K and Rb; and 0.001 to 10 mol % dopant.