Abstract:
Disclosed is a floating marine apparatus including a liquefied natural gas (LNG) tank. The apparatus includes a first LNG containing compartment and a second LNG containing compartment next to the first compartment. The apparatus further includes a bottom passage interconnecting bottom portions of the first and second compartments for fluid communication therebetween.
Abstract:
Liquid carbon dioxide separated from sour gas is expanded by throttling decompression and is gas-liquid separated at a low temperature so as to be supplied for shipping or the improvement of petroleum recovery. Methane generated from a stranded gas well is allowed to pass as a coolant through liquid carbon dioxide separated and discharged from sour gas generated from the stranded gas well so as to cool liquid carbon dioxide. Disclosed is a module for treating carbon dioxide, and a treatment method thereof for supplying liquid carbon dioxide at a proper temperature and state conditions when there is a need for liquid carbon dioxide of very low temperature for the storage or collection of carbon dioxide, the improvement of petroleum recovery, or the like by cooling carbon dioxide using a material separated from sour gas of a stranded gas well as a coolant.
Abstract:
The present disclosure relates to a liquefied gas storage tank and a marine structure including the same. The storage tank includes a plurality of liquefied gas storage tanks received in a plurality of spaces defined in a hull of the marine structure by a cofferdam and arranged in two rows. The cofferdam includes at least one longitudinal cofferdam extending in a longitudinal direction of the hull and at least one transverse cofferdam extending in a transverse direction of the hull. Each of the storage tanks is sealed and thermally insulated by a sealing wall and a thermal insulation wall extending without being disconnected. The longitudinal cofferdam supports load of an upper structure while suppressing a sloshing phenomenon.
Abstract:
Provided are a cold heat recovery apparatus using an LNG fuel and a liquefied gas carrier, in which costs involved in the installation and operation of a reliquefying facility can be reduced by recovering and utilizing cold heat of the LNG fuel when boil-off gas of liquefied gas as a cargo is reliquefied, and energy saving and reduction of environmental pollutants can be achieved because additional energy is not consumed in a reliquefaction process. A cold heat recovery apparatus for processing boil-off gas generated in a liquefied gas tank by using cold heat of an LNG fuel includes cold heat usage means using cold heat of an LNG supplied from an LNG fuel tank storing an LNG as a fuel to an engine, so as to processing the boil-off gas generated in the liquefied gas tank.
Abstract:
Disclosed is a floating marine apparatus including a liquefied natural gas (LNG) tank. The apparatus includes a first LNG containing compartment and a second LNG containing compartment next to the first compartment. The apparatus further includes a bottom passage interconnecting bottom portions of the first and second compartments for fluid communication therebetween.
Abstract:
The present disclosure relates to a liquefied gas storage tank and a marine structure including the same. The storage tank includes a plurality of liquefied gas storage tanks received in a plurality of spaces defined in a hull of the marine structure by a cofferdam and arranged in two rows. The cofferdam includes at least one longitudinal cofferdam extending in a longitudinal direction of the hull and at least one transverse cofferdam extending in a transverse direction of the hull. Each of the storage tanks is sealed and thermally insulated by a sealing wall and a thermal insulation wall extending without being disconnected. The longitudinal cofferdam supports load of an upper structure while suppressing a sloshing phenomenon.
Abstract:
Disclosed is a floating system. The floating system comprises a floating body, a first propeller and a second propeller. The first propeller is pivotally secured to the floating body. The second propeller is pivotally secured to the floating body and distanced from the first propeller in a first direction and in a second direction perpendicular to the first direction. The first and second directions are generally parallel to a surface of water on which the floating system floats.
Abstract:
Liquid carbon dioxide separated from sour gas is expanded by throttling decompression and is gas-liquid separated at a low temperature so as to be supplied for shipping or the improvement of petroleum recovery. Methane generated from a stranded gas well is allowed to pass as a coolant through liquid carbon dioxide separated and discharged from sour gas generated from the stranded gas well so as to cool liquid carbon dioxide. Disclosed is a module for treating carbon dioxide, and a treatment method thereof for supplying liquid carbon dioxide at a proper temperature and state conditions when there is a need for liquid carbon dioxide of very low temperature for the storage or collection of carbon dioxide, the improvement of petroleum recovery, or the like by cooling carbon dioxide using a material separated from sour gas of a stranded gas well as a coolant.