Abstract:
Disclosed is a UPS isolation control high speed transfer switch for switching a power supply path of a UPS to a bypass line and a power supply system equipped with the high speed transfer switch. The switch is isolated from the UPS and detects the output power of UPS, and switches a power supply path from a normal power line to the bypass line, by turning off the transfer switch of the bypass line after turning off an output breaker of a normal power line when the output power is deviated from a preset normal range. Furthermore, the switch performs a switching to the bypass line only when the output breaker of the UPS is actually turned off, after confirming the turn-off of the output breaker when switching the power supply path to the bypass line.
Abstract:
Provided is a radio wave transmittable laminate, which includes a substrate; a primer coating layer located on an upper surface of the substrate and including a polymer resin; a metal layer located on an upper surface of the primer coating layer and made of a metal; a plurality of micro cracks formed in the metal layer so as to transmit radio waves; and a hole pattern constituted by a plurality of holes which vertically penetrate the metal layer so as to transmit the radio waves.
Abstract:
Disclosed is a UPS isolation control high speed transfer switch for switching a power supply path of a UPS to a bypass line and a power supply system equipped with the high speed transfer switch. The switch is isolated from the UPS and detects the output power of UPS, and switches a power supply path from a normal power line to the bypass line, by turning off the transfer switch of the bypass line after turning off an output breaker of a normal power line when the output power is deviated from a preset normal range. Furthermore, the switch performs a switching to the bypass line only when the output breaker of the UPS is actually turned off, after confirming the turn-off of the output breaker when switching the power supply path to the bypass line.
Abstract:
Enclosed is an apparatus for analyzing micro-bubbles inside a high-purity glass tube by using a laser light dispersion. The apparatus includes: an optical base having a sample stage in a substantially horizontal orientation; a glass tube rotably mounted on the optical base in a substantially vertical orientation, the glass tube being rotated and translated in a vertical direction at a predetermined speed via the sample stage; a light generator disposed at one side of the glass tube for selectively irradiating a laser light onto an outer surface of the glass tube at a prefixed angle; and, a detector disposed at the other side of the glass tube for detecting the distribution and amount of micro-bubbles of the glass tube using the laser light passed through the glass tube.