Abstract:
The invention relates to a tire having at least one carcass reinforcement (2) comprising reinforcers, surmounted radially on the outside by a crown reinforcement (3) comprising two axial ends S, itself radially on the inside of a tread (4), said crown reinforcement (3) being made up of at least one layer of reinforcement elements, said tread (4) being connected to two beads (5) by way of two sidewalls (6), said beads (5) being intended to come into contact with a rim flange having a rim flange top C, each bead having at least one circumferential reinforcement element (7) known as a bead wire, said carcass reinforcement (2) comprising an end (8) at each bead (5), the end (8) of the carcass reinforcement (2) being turned up once in an outward radial direction of the tire and about said bead wire, so as to form a turnup, then being folded in the radially outward direction so as to form a fold of the carcass ply (2), said fold forming a radially external end (12a) and three adjacent parts along an axial axis made up of a central part (10), of an axially internal lateral part (11), and of an axially external lateral part (0), the fold being executed in an outward axial direction with respect to the centre of the tire, characterized in that a decoupling elastomer composition (14) having a secant modulus at 10% extension of greater than or equal to 10 MPa and preferably greater than or equal to 30 MPa and less than or equal to 60 MPa is present between the axially internal lateral part and the central part of said turnup, and at the radially external end (12a) of said turnup (12), said elastomer composition being present along a radial length comprised between the radially external end of the turnup and a radially internal point F with respect to the end of said turnup, said point being situated on the sidewall and at a distance from said radially external end by a length greater than 10 mm, and in that the radially external end (12a) of the turnup (12) is disposed between the rim flange top C and a point D, said points C and D being situated at the surface of the sidewall (6) and disposed on either side of a point E situated on the sidewall corresponding to the nominal section width, said point D being disposed at a maximum radial length equal to 85% of the length present between the axial end S of the crown reinforcement (3) and the rim flange top C.
Abstract:
Tire, the internal wall of which is covered with an airtight layer, itself covered with a layer of self-sealing product, comprising a radial carcass reinforcement (60) composed of reinforcing elements (61) having an elongation at break EBC and a breaking strength BSC, placed at a placement pitch PC and coated with rubber composition, designed so as to satisfy the inequality: BS C P C ≤ 1.5 · 10 6 · ( R S 2 - R E 2 ) R T . Each sidewall of the tire additionally comprises an additional strengthening reinforcement (120) composed of thread reinforcing elements having an elongation at break EBA and a breaking strength BSA, placed at a placement pitch PA and coated with rubber composition, in which each of the two additional strengthening reinforcements is designed such that: BS A P A ≥ 1.3 · BS C P C , and EBC≧EBA, the breaking strengths BSA and BSC and the elongations at break EBC and EBA being determined on the reinforcing elements before their incorporation in the tire.
Abstract:
A hydrogen leakage detector includes a sensor and a microcontroller. The sensor is sensitive to a concentration of hydrogen in air. A sensitive unit of the sensor is exposed directly to an in situ concentration of the hydrogen. The microcontroller is programmed to generate and output an analog signal corresponding to concentration information, based on a concentration measurement from the sensor, and to generate and output an analog signal indicating a correct operation of the detector.