Abstract:
A shotgun sight is provided with a barrel, a sighting rib, a rib support member, a pitch adjustment mechanism, and a latch mechanism. The rib support member is provided on the barrel. The pitch adjustment mechanism is provided between the rib and the rib support member to adjust pitch of the rib relative to the barrel. The latch mechanism has a pair of coacting base plates. A first base plate is provided along a proximal end of the rib and a second base plate is provided on the rib support member. Each base plate has an array of complementary-shaped interlocking projections. One of the base plates is configured to be forcibly urged apart from the other base plate to reposition the array of interlocking projections in order to selectively position the rib relative to the barrel at one of a plurality of locations each corresponding with a unique pitch for the rib relative to the barrel. An adjustable gun sight is also provided.
Abstract:
A footbag includes a bag portion and an appendage attached to the bag portion. The appendage may be provided in many different shapes and configurations for making the footbag easier to see and play with.
Abstract:
Methods for modeling a random variable with spatially inhomogenous statistical correlation versus distance, standard deviation, and mean by spatial interpolation with statistical corrections. The method includes assigning statistically independent random variable to a set of seed points in a coordinate frame and defining a plurality of test points at respective spatial locations in the coordinate frame. A equation for a random variable is determined for each of the test points by spatial interpolation from one or more of the random variable assigned to the seed points. The method further includes adjusting the equation of the random variable at each of the test point with respective correction factor equations.
Abstract:
Methods for modeling a random variable with spatially inhomogenous statistical correlation versus distance, standard deviation, and mean by spatial interpolation with statistical corrections. The method includes assigning statistically independent random variable to a set of seed points in a coordinate frame and defining a plurality of test points at respective spatial locations in the coordinate frame. A equation for a random variable is determined for each of the test points by spatial interpolation from one or more of the random variable assigned to the seed points. The method further includes adjusting the equation of the random variable at each of the test point with respective correction factor equations.
Abstract:
Methods for distributing a random variable by spatial interpolation with statistical corrections. The method includes assigning a numerical value of the random variable at each vertex of an array of equilateral triangles formed in a planar coordinate frame and defining a plurality of test points at respective spatial locations in the planar coordinate frame that are bounded by the array of equilateral triangles. A numerical value of the random variable is distributed at each of the test points by spatial interpolation from one or more of the numerical values of the random variable assigned at each vertex of the array of equilateral triangles. The method further includes adjusting the numerical value of the random variable distributed at each of the test points with a respective correction factor.