Abstract:
An apparatus for optical pointing is disclosed. The apparatus comprises a telescope, a transmission prism rotatably coupled to the telescope, and a rotatable mechanism operatively coupled to the telescope. The transmission prism is configured to rotate around a first rotation axis, and the rotatable mechanism is configured to rotate around a second rotation axis that is different than the first rotation axis.
Abstract:
A portable imaging apparatus and system. A sample processing device has a reaction chamber configured to receive a sample and react the sample with a fluorescent compound that emits a specified wavelength of light when excited by light within an excitation band. An illumination source can be positioned to illuminate the reaction chamber when the sample processing device is positioned for imaging. A light guide can be positioned to face the reaction chamber and transfer the emitted light to an imaging detector. The light guide has a filter that blocks the wavelength of light from the illumination source and passes the fluorescent emitted light. The light guide unit defines an angular light acceptance range and is configured to constrain angular spreading of light.
Abstract:
A multi-resonator filter has a signal input terminal, a signal output terminal, and a plurality of resonator components. The plurality of resonator components include an input resonator component coupled to the signal input terminal, an output resonator component coupled to the signal output terminal, and at least one intermediate resonator component coupled between the input resonator component and the output resonator component. The input resonator component, output resonator component and the at least one intermediate resonator component are arranged in a sequence to define a signal path between the signal input terminal and the signal output terminal. The at least one intermediate resonator component includes at least one multiple resonator component, where each multiple resonator component includes a pair of individual resonators coupled in parallel where each individual resonator in a given pair of individual resonators has the same resonant frequency.
Abstract:
A termination for absorbing electromagnetic energy provided by a transmission line and for transferring any resulting heat to a heat sink. The termination comprises a housing in communication with the transmission line for receiving the electromagnetic energy, and in communication with the heat sink for transferring the resulting heat thereto. The termination also includes a conductor disposed within the housing and cooperating with the housing for providing an internal transmission line structure for confining and guiding the electromagnetic energy within the termination. The termination also includes an absorber comprising a lossy dielectric. The absorber is disposed within the housing and is in communication with the internal transmission line for receiving the electromagnetic energy and absorbing the electromagnetic energy in accordance to an absorption profile of the termination. The absorber converts the absorbed energy into heat and is in communication with the housing for transferring the heat thereto.
Abstract:
Various embodiments for a coaxial low-pass filter are described herein. Generally, the coaxial low-pass filter is operable to generate a stopband by a controlled generation of transmission zeroes within a stopband frequency range. The coaxial filter includes a plurality of cavity junctions, each of the plurality of cavity junctions operable to generate at least one corresponding cavity-specific transmission zero through a dual-mode coupling of a transverse electromagnetic and a transverse magnetic resonant mode, the at least one cavity-specific transmission zero being generated at at least one corresponding frequency located within the stopband frequency range, wherein for each cavity junction, the location of the cavity-specific frequency is adjusted by adjusting at least one property of the cavity junction, wherein a scattering of the locations of each of the cavity-specific transmission zeroes, generated by each of the plurality of cavity junctions, generates the stopband at the desired frequency range.
Abstract:
A multi-resonator filter has a signal input terminal, a signal output terminal, and a plurality of resonator components. The plurality of resonator components include an input resonator component coupled to the signal input terminal, an output resonator component coupled to the signal output terminal, and at least one intermediate resonator component coupled between the input resonator component and the output resonator component. The input resonator component, output resonator component and the at least one intermediate resonator component are arranged in a sequence to define a signal path between the signal input terminal and the signal output terminal. The at least one intermediate resonator component includes at least one multiple resonator component, where each multiple resonator component includes a pair of individual resonators coupled in parallel where each individual resonator in a given pair of individual resonators has the same resonant frequency.
Abstract:
Various embodiments for an optical system are described herein. Generally, the optical system may include an optical transmitter coupled to an optical signal transmission path, an optical receiver coupled to an optical signal reception path, and an external signal path extending between an external optical assembly and both the optical signal transmission path and the optical signal reception path. An optical polarization division multiplexer may be provided to couple the optical signal transmission path and the optical signal reception path to the external signal path. A first non-reciprocal polarization rotator may be also positioned along the external signal path between the optical polarization division multiplexer and the external optical assembly. Further, a quarter wave plate may be positioned along the external signal path between the non-reciprocal polarization rotator and the external optical assembly.
Abstract:
A spectrometer and method for determining an emitted light spectrum. An input light signal is received and directed to an array of interferometers using waveguides. A plurality of self-interfering signals are detected from a first plurality of interferometers in the array of interferometers. The first plurality of interferometers has fewer interferometers than required to satisfy the Nyquist criterion for reconstructing the emitted light spectrum. The emitted light spectrum is reconstructed from the plurality of self-interfering signals using compressive sensing. The plurality of self-interfering signals can provide an interference pattern used to reconstruct the emitted light spectrum. A second plurality of interferometers may output a second plurality of self-interfering signals to reconstruct a low resolution spectrum of the input light signal satisfying the Nyquist criterion. Low resolution signal components can be detected from the low resolution spectrum and used to pre-process the interference pattern.
Abstract:
A method for surface treating a titanium-containing metal, comprising the steps of: (a) treating at least a portion of a surface of the titanium-containing metal with an anodic activation in an electrolyte bath; and (b) strike plating at least a portion of the surface of the treated titanium-containing metal with a metallic coating in the same electrolyte bath as in step (a), wherein the titanium-containing metal remains submerged in the electrolyte bath during steps (a) and (b). The invention also provides for a method for plating a titanium-containing metal, comprising the steps of: (a) surface treating the titanium-containing metal with the method disclosed herein; (b) strike plating at least a portion of the first struck titanium-containing metal with a second metallic coating in a second electrolyte bath; and (c) non-oxidatively heat treating the second struck titanium-containing metal for a period of time sufficient to cause diffusion bonding between the first metallic coating and the titanium-containing metal. The invention also provides parts made in accordance with the methods disclosed herein.
Abstract:
A microwave switch for transmitting signals having a plurality of ports and a plurality of signal paths for selective transmission of the signals. Each signal path is disposed between a respective pair of the ports and each signal path has a conducting state in which signal transmission occurs between the respective pair of ports and a non-conducting state in which signal transmission does not occur between the respective pair of ports. The switch also has a plurality of actuators, each actuator being adapted to actuate at least one of the signal paths between the conducting and non-conducting states. At least one of the ports and at least one of the signal paths are located on a first plane and the remainder of the ports and the signal paths are located on a second plane such that there are no cross over points between the signal paths in any of the planes. A switch matrix can be built using this bi-planar switch such that the switches in the matrix are connected without any cross over points.