Abstract:
Segmentation algorithms may operate on vast quantities of data to segment the data into a useful data the model. The segmentation data model may then be applied to additional data that may be received in real time. Further, the real time data may be given a score based on the segmentation model and the desires of the user. The segmentation of the data and the score may be returned to a user and the user may determine if additional actions make logical sense based on the score and segmentation.
Abstract:
wherein Z1 is (CH2)q or C═O; Z2 is (CH2)p or C═O; D is —CH═ or C═O or (CH2)m where m is 0, 1, 2 or 3; n=0, 1 or 2; p=1 or 2; q=0, 1 or 2; Q is C or N; A is (CH2)x where x is 1 to 5, or A is (CH2)x1, where x1 is 1 to 5 with an alkenyl bond or an alkynyl bond embedded anywhere in the chain, or A is —(CH2)x2—O—(CH2)x3— where x2 is 0 to 5 and x3 is 0 to 5, provided that at least one of x2 and x3 is other than 0; B is a bond or is (CH2)x4 where x4 is 1 to 5; X is CH or N; X2 is C, N, O or S; X3 is C, N, O or S; X4 is C, N, O or S; X5 is C, N, O or S; X6 is C, N, O or S; provided that at least one of X2, X3, X4 X5 and X6 is N; and at least one of X2, X3, X4 X5 and X6 is C. R1 is H or alkyl; R2 is H, alkyl, alkoxy, halogen, amino, substituted amino or cyano; R2a, R2b and R2c may be the same or different and are selected from H, alkyl, alkoxy, halogen, amino, substituted amino or cyano; and R3, E, Z and Y are as defined herein.
Abstract:
Rifamycin derivatives having the following structure of general formula I (both hydroquinone and corresponding quinone (C1-C4) forms): or its salts, hydrates or prodrugs thereof; wherein a preferred R1 comprises hydrogen or acetyl and a prefered R2 comprises hydrogen, methyl or other lower alkyls; wherein asterik (*) denotes the carbon bearing the chiral center, wherein absolute configuration is assigned as R or S. Methods of preparation of the aforementioned rifamycin derivatives are also described. The compounds exhibit antimicrobial activities, including activities against drug-resistant microorganisms.
Abstract:
Novel rifamycin derivatives of formula I (both hydroquinone and corresponding quinone (C1-C4) forms): or their salts, hydrates or prodrugs thereof, wherein: a preferred R comprises hydrogen, acetyl; L is a linker, a preferred linker group elements selected from any combination of 1 to 5 groups shown FIG. 1, provided L is not wherein R1 is H, methyl or alkyl. The inventive compounds exhibit valuable antibiotic properties. Formulations having these compounds can be used in the control or prevention of infectious diseases in mammals, both humans and non-humans. In particular, the compounds exhibit a pronounced antibacterial activity, even against multiresistant strains of microbes.
Abstract:
The present invention relates to rifamycin 3-iminomethylenyl (—CH═N—) derivatives having antimicrobial activities, including activities against drug-resistant microorganisms. The claimed rifamycin derivative has a rifamycin moiety covalently linked to a linker through an iminomethylenyl (—CH═N—) group at the C-3 carbon of the rifamycin moiety and the linker is, in turn, covalently linked to a quinolone structure or its pharmacophore within the DNA gyrase and topoisomerase IV inhibitor family. The inventive rifamycins are novel and exhibit activity against both rifampin and ciprofloxacin-resistant microorganisms.
Abstract:
Compounds are provided which are useful as antidiabetic agents and antiobesity agents and have the structure wherein m is 0, 1 or 2; n is 0, 1 or 2; Q is C or N; A is (CH2)x where x is 1 to 5, or A is (CH2)x1 where x1 is 1 to 5 with an alkenyl bond or an alkynyl bond embedded anywhere in the chain, or A is —(CH2)x2—O—(CH2)x3— where x2 is 0 to 5 and x3 is 0 to 5, provided that at least one of x2 and x3 is other than 0; B is a bond or is (CH2)x4 where x4 is 1 to 5; X is CH or N; X2 is C, N, O or S; X3 is C, N, O or S; X4 is C, N; O or S; X5 is C, N, O or S; X6 is C, N, O or S; provided that at least one of X2, X3, X4 X5 and X6 is N; and at least one of X2, X3, X4 X5 and X6 is C, and specifically excluding the structure(s) as shown below: where X2═N, X3═C, X4═O or S, Z=O or a bond R1 is H or alkyl; R2 is H, alkyl, alkoxy, halogen, amino or substituted amino or cyano; R2a, R2b and R2c may be the same or different and are selected from H, alkyl, alkoxy, halogen, amino or substituted amino or cyano; and R3 and Y are as defined herein, which compounds are useful in treating diabetes and obesity.
Abstract:
Embodiments of the invention relate in part to determining a testing model and providing a testing transaction score for transactions. The testing transaction score may indicate a likelihood that the transaction is a testing transaction. One embodiment of the invention discloses a method comprising receiving a first authorization message for a first transaction using an account, determining a testing transaction score for the first transaction using a testing model, and determining that the first transaction is a testing transaction based on the testing transaction score, wherein the testing transaction score for the first transaction is used for declining a second transaction using the same account conducted after the first transaction.
Abstract:
Embodiments of the invention relate in part to determining a testing model and providing a testing transaction score for transactions. The testing transaction score may indicate a likelihood that the transaction is a testing transaction. One embodiment of the invention discloses a method comprising receiving a first authorization message for a first transaction using an account, determining a testing transaction score for the first transaction using a testing model, and determining that the first transaction is a testing transaction based on the testing transaction score, wherein the testing transaction score for the first transaction is used for declining a second transaction using the same account conducted after the first transaction.