Abstract:
A method for constructing a database having digital video data information representing a plurality of video sequence is disclosed. The method includes the steps of: a) partitioning each image frame of each video sequence into L number of sub images; b) generating L number of edge histograms for each image frame; c) normalizing the edge histogram bins to thereby generate M number of normalized edge histogram bins; d) calculating M representative edge histogram bins in order to generate L number of representative edge histograms based on the normalized edge histogram bins; and e) non-linearly quantizing the representative edge histogram bins to generate M number of quantization index values for the each representative edge histogram, to be stored in the database.
Abstract:
A method for generating a block-based image histogram from data compressed by JPEG, MPEG-1, and MPEG-2, or uncompressed image data employing block-based linear quantization to generate histograms that include color, brightness, and edge components. The edge histogram, in particular, includes the global edge features, semi-global edge features, and local edge features. The global edge histogram is based on image blocks of the entire image space. The local edge histogram is based on a group of edge blocks. The semi-global edge histogram is based on the horizontally and the vertically grouped image blocks. A method for generating block-based image histogram with color information and brightness information of image data in accordance with an embodiment of the present invention extracts feature information of an image in terms of the block and updates global histogram bins on the basis of the feature information. The method for generating block-based image histogram with color information and brightness information of image data minimizes quantization error by employing linear weight and updates values of histogram bins. The error that occurs at a boundary between bins of the histograms and the linear weight depends on the distance between the histogram bins.
Abstract:
A method for manufacturing ferroelectric thin-film which is used as a memory cell for an FRAM includes the steps of: (a) forming a lower electrode, a ferroelectric thin-film and an upper Pt electrode on a substrate in sequence; (b) forming a photoresist on the upper Pt electrode; (c) patterning the photoresist in a predetermined pattern; and (d) etching the substrate, the step (d) including the steps of installing a holder to which a predetermined DC self bias voltage is generated in a chamber of a plasma etching apparatus around which an RF coil is wound, of injecting Ar, chloric and fluoric gases of a predetermined composition ratio into the chamber, of applying a RF power of a predetermined frequency and power to the RF coil to generate an inductively coupled plasma in the chamber, and of etching down the substrate from the upper Pt electrode to the ferroelectric thin-film to a predetermined depth by the plasma of the Ar, chloric and fluoric gases using the photoresist as a mask. As a result, the etching rate of a ferroelectric thin-film and electrode is sharply increased, and particularly, the etching selectivity of the ferroelectric thin-film and electrode with respect to the photoresist is improved, so that the photoresist can be used as a mask.
Abstract:
A method for dry etching a metallic thin film (i.e., platinum thin film) is disclosed whereby a clean metallic thin film can be formed by restraining redeposition of the metal. The etching gas includes a mixed gas including Cl.sub.2 and SiCl.sub.4 whereby a plasma of the mixed gas generates reactive species to react with the metallic thin film and form volatile residua that can be desorbed from the etched surface.