Abstract:
A planar dual polarization antenna for receiving and transmitting radio signals includes a ground metal plate, a first dielectric board formed on the ground metal plate, and a first patch plate formed on the first dielectric board with a shape substantially conforming to a cross pattern.
Abstract:
An antenna device is provided and includes a bottom, two monopole antennas, and a cover assembled with the bottom. A projection plane is defined perpendicular to the bottom. The two monopole antennas substantially symmetrically protrude from the bottom, and a gap is formed between the two monopole antennas. Projections of the two monopole antennas on the projection plane intersect with each other. Each of the two monopole antennas includes a first frequency receiving portion adjacent to the bottom, a second frequency receiving portion, and a connection portion located between the first frequency receiving portion and the second frequency receiving portion. A slot is formed through the connection portion to adjust a received frequency of the first or second frequency receiving portion. An accommodating space is formed between the cover and the bottom to accommodate the two monopole antennas.
Abstract:
A patch antenna includes a metallic ground plate, a metallic radiating element, and a polymer plastic dielectric layer sandwiched between the radiating element and the ground plate. Top and bottom surfaces of the dielectric layer are primed with polymeric surfactants to provide better adhesive characteristics at low temperatures. The radiating element is fixed to the dielectric layer by compressing an adhesive layer applied to the radiating element between the radiating element and the priming layer applied to the top surface of the dielectric layer. The ground plate is fixed to the dielectric layer by compressing another adhesive layer applied to the ground plate between the ground plate and the priming layer applied to the bottom surface of the dielectric layer. A low noise amplifier may be integrated with the antenna by sharing the common ground plate and connecting the amplifier's signal trace to the radiating element via a conductor pin.
Abstract:
A multi-beam-reflector dish antenna system. Signals from different satellites are simultaneously received using a single compound LNBF module. The antenna dish includes a reflector with N-th order projected aperture and a single compound LNBF module constituting multiple LNBF units. The reflector is formed by projected aperture cutting and surface distortion of the aperture in accordance with the method of analysis and synthesis. In addition to reflecting signals from satellites, it also generates focused waves sharing similar radiation patterns and horizontal gain with incoming waves on the focal plane to be received by the compound LNBF modules.
Abstract:
A wave receiving apparatus comprising a reflector; a conduit for guiding waves, having an open end allowing entrance of polarized waves reflected by the reflector; a septum polarizer monolithically formed with the conduit for effecting a circular-linear polarization conversion; a pair of signal collectors pointing to the same direction or towards each other and positioned at a distance of quarter-wavelength away from the rear end of the conduit for receiving wave signals; and a circuitry module, positioned sidelong next to said conduit seen from said open end into said conduit, to which the signal collectors are electrically connected for handling wave signals.
Abstract:
An antenna device is provided and includes a bottom, two monopole antennas, and a cover assembled with the bottom. A projection plane is defined perpendicular to the bottom. The two monopole antennas substantially symmetrically protrude from the bottom, and a gap is formed between the two monopole antennas. Projections of the two monopole antennas on the projection plane intersect with each other. Each of the two monopole antennas includes a first frequency receiving portion adjacent to the bottom, a second frequency receiving portion, and a connection portion located between the first frequency receiving portion and the second frequency receiving portion. A slot is formed through the connection portion to adjust a received frequency of the first or second frequency receiving portion. An accommodating space is formed between the cover and the bottom to accommodate the two monopole antennas.
Abstract:
An antenna for receiving and transmitting radio signals includes a ground metal plate, a first patch plate, a second patch plate, a first feed-in wire electrically connected to the first patch plate for transmitting radio signals, a second feed-in wire electrically connected to the second patch plate for transmitting radio signals, and an insulation fixing unit for fixing the ground metal plate, the first patch plate and the second patch plate, to ensure that the ground metal plate, the first patch plate and the second patch plate do not electrically contact to each other.
Abstract:
The invention discloses a dual frequency feed assembly for receiving signals of both a first band and a second band lower than the first band, or transmitting signals of one of the first band and the second band while receiving signals of the other band. The dual frequency feed assembly includes an orthogonal-mode transducer, which includes: a core unit having an inner waveguide, an outer waveguide with a diameter larger than that of the inner waveguide and the two waveguides being concentric, a first band output/input port connected to the inner waveguide, and a second band output/input port; and two or four detachable branch waveguides connected to the core unit. An O-ring is provided at each connection between the core unit and the branch waveguides. The dual frequency feed assembly further comprises a first band polarizer made of a metal septum and/or a second band polarizer made of dielectric slabs, when receiving circularly polarized signals. Both of them can be provided in the inner waveguide or the outer waveguide, respectively, which makes the feed assembly design more compact and suitable for mass production.
Abstract:
A signal receiver. The signal receiver comprises a flat antenna, a partition, a board, and a plug. The antenna has a receiving element and an antenna surface. The partition has a first partition surface and a second partition surface. The first partition surface contacts the antenna surface. The board has a first board surface, a second board surface and a circuit. The first board surface contacts the second partition surface. The circuit is disposed on the second board surface. The plug has a first pin which is projected through the board and fixed on the first board surface. The first pin is connected with the circuit.
Abstract:
A patch antenna includes a metallic ground plate, a metallic radiating element, and a polymer plastic dielectric layer sandwiched between the radiating element and the ground plate. Top and bottom surfaces of the dielectric layer are primed with polymeric surfactants to provide better adhesive characteristics at low temperatures. The radiating element is fixed to the dielectric layer by compressing an adhesive layer applied to the radiating element between the radiating element and the priming layer applied to the top surface of the dielectric layer. The ground plate is fixed to the dielectric layer by compressing another adhesive layer applied to the ground plate between the ground plate and the priming layer applied to the bottom surface of the dielectric layer. A low noise amplifier may be integrated with the antenna by sharing the common ground plate and connecting the amplifier's signal trace to the radiating element via a conductor pin.