Abstract:
A process of fabricating a non-gap 3-D microstructure array mold core comprises a first step in which a buffer layer is coated on a substrate. A photomask layer is then coated of the buffer layer. A pattern is subsequently formed on the photomask by photo-lithography. The patterned photomask layer is subjected to a reflow by which a microstructure array is formed on the photomask layer. The microstructure array is coated with a metal conductive layer. The microgaps of the microstructure array are eliminated by an electrocasting layer which is coated on the microstructure array. The non-gap microstructure array mold core so fabricated is made into a metal molding tool by microinjection molding or microthermo-pressure molding.
Abstract:
A process method of using excimer laser for forming micro spherical and non-spherical polymeric structure array includes a photomask which has a selected curved pattern formed thereon. The curved pattern has non-constant widths along a straight line direction. An excimer laser beam source is deployed to project through the photomask on a substrate coated with a polymeric material while the substrate is moving in a direction normal to the straight line direction for the polymeric material to receive laser beam projection with different time period. The polymeric material thus may be etched to different depth to form a three dimensional pattern desired. By projecting and etching the polymeric material two times at different directions or through different photomask patterns, a sphere like or non-sphere like surface of micro array structure may be obtained.
Abstract:
A system of angular displacement control for micro mirrors includes a stationary vertical element, a stationary horizontal element and an interference eliminator. Alternatively, the stationary horizontal element holds micro mirrors in place during transportation for avoiding vibration and collision. The stationary vertical element orientates the micro mirrors in the vertical position. The interference eliminator eliminates magnetic interference that could affect the operation of the micro mirrors. The micro mirrors having interference eliminators are capable of remaining unaffected by operations of other micro mirrors.
Abstract:
A backlight module includes a light source, a light guide plate for guiding light from the light source, and a brightness enhancement film having a plurality of spherical surface microlenses for gathering light from the light guide plate. In contrast to traditional prism sheets, the brightness enhancement film having the plurality of spherical surface microlenses have better efficiency of light-gathering.
Abstract:
The present invention provides a fabrication process for making an integrated micro spherical lens for an optical switch. Through a semiconductor micro imaging process and a wet-etching process of micro electromechanical working, a plurality of V-shape grooves and mesas are formed on the surface of a base. A further micro imaging process, an etching process and a heat tempering process are used to form a micro spherical lens on the mesa, so that an integrated micro spherical lens and fiber array can be precisely arranged.
Abstract:
A method of making molds for use in manufacturing high precision and high density multiple-lead microstructures. If employs microphoto etching process used in semiconductor manufacturing process to project X-ray and ultraviolet light on a photoresist layer through a X-ray co-mask and a generally used mask to produce exposing process. Through etching and electroplating processes, a plurality of identical punch molds may be made. The punch molds are aligned stacked up one upon the other until a desired height is reached. The stacked up punch molds are electroplated to form a lead punch die for producing microparts desired.
Abstract:
A backlight module includes a light source, a light guide plate for guiding light from the light source, and a brightness enhancement film having a plurality of spherical surface microlenses for gathering light from the light guide plate. In contrast to traditional prism sheets, the brightness enhancement film having the plurality of spherical surface microlenses have better efficiency of light-gathering.
Abstract:
The present invention provides a fabricating process for forming a flexible substrate, including the steps of: providing the substrate which is composed of a top plate and a bottom plate, and then a positive electrode layer and a organic electro-luminescence (EL) are formed in sequence on the bottom plate; after that, a same axial downward patterned template is pressed onto the bottom plate for “micro-patterning”, and thus the positive electrode layer and the organic electro-luminescence (EL) layer on the bottom plate are patterned in the same axial; providing a top plate, on which a metal layer as a negative electrode is formed; similarly, a same axial upper patterned template is pressed onto the top plate for “micro-patterning”, and thus the metal layer on the top plate is patterned in the same axial; finally, superimposing the top plate on the bottom plate so that the axis of patterned positive electrode layer and patterned organic EL layer crisscross with the axis of patterned metal layer to construct a chessboard-like structure.
Abstract:
A method of making a micro magneto-controlled optical path-guiding platform comprises an optical path-guiding platform, couples of the optical routes, a micro magneto-flux prism located at the intersection of the optical route on the topside of the platform, and a magnetic field generator oppositely mounted under the location of the micro magneto-flux prism of the platform bottom side respectively. Therefore, the reflection ratio and refraction ratio to the incident optical signal traveling through this designed micro magneto-flux prism will be completely manipulated by adjusting the magnetic field intensity that is generated by the magnetic generator. Conclusively, this invention can be used to change the traveling orientation of the optical route or control the optical energy intensity as desired.