Abstract:
A variable speed drive includes a converter connected to an AC power source, a DC link connected to the converter, and an inverter connected to the DC link. The inverter converts DC voltage into an output AC power having a variable voltage and frequency. The inverter includes at least one power electronics module and associated control circuitry; a heat sink in thermal communication with the power electronics module and in fluid communication with a manifold. The manifold includes a tubular member having at least one vertical member portion and at least one horizontal member portion in fluid communication. A plurality of ports conduct cooling fluid into and out of the manifold. A bracket attaches the manifold to a structural frame. Brackets are provided for attachment of power electronics modules to the manifold.
Abstract:
A data measurement device in a high voltage direct current (HVDC) system is provided. The data measurement device includes: a power measurement unit measuring pieces of power related data; and a control unit determining measurement times at which the pieces of power related data are measured respectively, and performing control based on pieces of power related data having a same measurement time among the pieces of power related data.
Abstract:
A method to control a voltage source converter (CON1; CON2) in a HVDC system comprises the step of controlling a frequency and a voltage amplitude of an AC voltage (UV1; UV2) generated by the voltage source converter (CON1; CON2) independently of the conditions in an AC network (N1; N2) connected to the voltage source converter (CON1; CON2). This method is performed by a control unit of a HVDC system. In a special embodiment, the method forms the basis of a method to black start an AC network, where the AC network comprises transmission lines and is connected to at least two AC power stations, where one of the at least two AC power stations is connected via a HVDC system to the AC network.
Abstract:
The present invention discloses an isolated power converter circuit and a control method thereof. The isolated power converter circuit includes: a transformer circuit, a power switch circuit, an opto-coupler circuit, and a control circuit. The transformer circuit includes a first winding and a second winding. The power switch circuit is coupled to the transformer circuit to control it according to a driving signal. The opto-coupler circuit generates a feedback signal. The control circuit is coupled to the power switch circuit and the opto-coupler circuit, for generating the driving signal according to the feedback signal. The control circuit includes a distinguishing circuit for distinguishing a status of the feedback signal.
Abstract:
Disclosed is an electromagnetic induction type power supply device, which generates electric power through an electromagnetic induction method using a transformer from current flowing through a transmission line, can adjust an output thereof by detecting and feeding back the output, enables a transformer and a power converting unit to be added or removed as necessary. The electromagnetic induction type power supply device includes a transformer module including a plurality of transformers for outputting electric power by inducing, in an electromagnetic induction method, secondary current from primary current flowing through a transmission line; a power source module including a plurality of power converting units for converting the electric power output from the plurality of transformers to direct current power and outputting the converted power; and a power summing unit for summing the direct current power output from the plurality of transformers and providing the summed power to a load.
Abstract:
A device for controlling a high voltage direct current (HVDC) transmission system is provided. The device includes: a communication unit communicating with a control device; a control unit obtaining a databack signal received through the communication unit, checking a data line error and a line connection error based on an obtained databack signal, and outputting a valve control signal based on the databack signal; and an output unit outputting the valve control signal to a valve control device based on control of the control unit.
Abstract:
Embodiments described herein provide a power delivery system, as well as a method of configuring the power delivery system. The power delivery system includes two or more rectifiers electrically coupled to an AC power source and configured to generate a direct current. The power delivery system also includes two or more inverters configured to receive the direct current and generate an alternating current waveform for powering a load. Moreover, the two or more rectifiers and the two or more inverters are coupled in series with each other through an inductor.
Abstract:
The present invention discloses an isolated power converter circuit and a control method thereof. The isolated power converter circuit includes: a transformer circuit, a power switch circuit, an opto-coupler circuit, and a control circuit. The transformer circuit includes a first winding and a second winding. The power switch circuit is coupled to the transformer circuit to control it according to a driving signal. The opto-coupler circuit generates a feedback signal. The control circuit is coupled to the power switch circuit and the opto-coupler circuit, for generating the driving signal according to the feedback signal. The control circuit includes a distinguishing circuit for distinguishing a status of the feedback signal.
Abstract:
A 3-phase uninterruptible power supply (UPS) including first, second, and third AC/DC converters, a DC/DC converter, and at least one DC/AC converter coupled to multiple electrical buses. The first, second, and third AC/DC converters each being configured to receive AC power and to provide multiple DC signals to the multiple electrical buses. The DC/DC converter being configured to convert DC voltages present on the multiple electrical buses to a DC voltage that can be used to charge a battery. The DC/AC converter being configured to receive DC power from the multiple electrical buses and to provide an AC output. The 3-phase UPS being configured such that when suitable AC power is provided to the AC/DC converters, the DC/DC converter is configured to charge a battery, and when suitable AC power is not provided to the AC/DC converters, the DC/DC converter is configured to provide DC power to the multiple electrical buses using power provided by the battery.
Abstract translation:包括第一,第二和第三AC / DC转换器,DC / DC转换器和耦合到多个电气总线的至少一个DC / AC转换器的三相不间断电源(UPS)。 每个第一,第二和第三AC / DC转换器被配置为接收AC电力并且向多个电总线提供多个DC信号。 DC / DC转换器被配置为将存在于多个电气总线上的DC电压转换成可用于对电池充电的DC电压。 DC / AC转换器被配置为从多个电总线接收DC电力并提供AC输出。 三相UPS被配置为使得当AC / DC转换器提供适当的AC电力时,DC / DC转换器被配置为对电池充电,并且当没有向AC / DC转换器提供适当的AC电力时, DC / DC转换器被配置为使用由电池提供的电力向多个电气总线提供DC电力。
Abstract:
The invention relates to a static frequency converter in a housing, especially a frequency converter controlling and/or adjusting the performance data of an electromotor. The housing is shaped as a pressure-resistant casing sealed toward the ambient and at least partially provided with a filler serving as a heat conductor for the dissipation of heat to the surface of the casing.