摘要:
A two-step spacer etch is used for the formation of a spacer in CMOS fabrication. A dry etch is first applied to remove part of the spacer material on the silicon substrate and leave a thin layer of the spacer material remained on the silicon substrate. Then, a wet etch is applied to completely remove the thin layer of the spacer material on the silicon substrate. The wet etch has good etch selectivity between the spacer material and silicon, and thus will not damage the surface of the silicon substrate when the spacer is formed. Therefore, the BJT on the silicon substrate is prevented from junction leakage.
摘要:
A method is disclosed for forming an image sensor. In a semiconductor wafer containing a p-type region an n-type connection region is formed within the p-type region. An n-type photodiode region is formed in the p-type region connected to the connection region. A field oxide isolation region is formed, having a part that is over portions of the n-type connection region and the n-type photodiode region. This part of the field oxide region covers the area where these regions are connected and extends into these regions. The edges of this part of the field oxide region fall within these regions, while leaving a distance between these edges and pn junctions formed by the connection region and the p-type region and the n-type photodiode region and p-type region. A gate oxide is formed over regions not covered by field oxide. An extended gate structure is formed extending from above this part of the field oxide isolation region to a distance beyond the connection region so as to accommodate a channel of an n-channel MOSFET. The drain region of the n-channel MOSFET is formed, with the connection region acting as the source. A blanket transparent insulating layer is deposited.
摘要:
A method is disclosed for forming an image sensor. In a semiconductor wafer containing a p-type region an n-type connection region is formed within the p-type region. An n-type photodiode region is formed in the p-type region connected to the connection region. A field oxide isolation region is formed, having a part that is over portions of the n-type connection region and the n-type photodiode region,. This part of the field oxide region covers the area where these regions are connected and extends into these regions. The edges of this part of the field oxide region fall within these regions, while leaving a distance between these edges and pn junctions formed by the connection region and the p-type region and the n-type photodiode region and p-type region. A gate oxide is formed over regions not covered by field oxide. An extended gate structure is formed extending from above this part of the field oxide isolation region to a distance beyond the connection region so as to accommodate a channel of an n-channel MOSFET. The drain region of the n-channel MOSFET is formed, with the connection region acting as the source. A blanket transparent insulating layer is deposited.
摘要:
The present invention discloses a bipolar junction transistor (BJT) with surface protection and a manufacturing method thereof. The BJT includes: a first conductive type base, a second conductive type emitter, and a second conductive type collector, which are formed in a substrate, wherein the base is formed between and separates the emitter and the collector, and the base includes a base contact region functioning as an electrical contact node of the base; and a gate structure which is formed on the substrate between the base contact region and the second conductive type emitter.
摘要:
According to the present invention, a semiconductor process for butting contact comprises: providing a substrate on which are formed two adjacent transistor gates; implanting a full area between the two adjacent transistor gates by a tilt angle, to form a lightly doped region of a first conductivity type; forming a heavily doped region of the first conductivity type and a heavily doped region of a second conductivity type in the area between the two adjacent transistor gates, in which the heavily doped region of the second conductivity type overrides the lightly doped region of the first conductivity type, and divides the heavily doped region of the first conductivity type into two areas; depositing a dielectric layer; and forming a butting contact in the dielectric layer which concurrently contacts the two divided heavily doped regions of the first conductivity type.