摘要:
A component with a self-healing surface layer, a self-healing enamel and a coating powder are disclosed. A self-healing is guaranteed by a reactive substance, which is encased in sheathed particles. Only damage to the enamel coating leads to a destruction of the coating, preferably under the influence of a catalytic material, so that the encased fluid enamel can emerge. Under the effects of UV light the fluid enamel cures and seals the crack thus occurring.
摘要:
A component includes a catalyst surface having regions of CeO2 and regions of MnO2 that contact the regions of CeO2. Said material pairings may provide an improved catalytic effect compared to pure oxides. Said surfaces can, for example, also be used in indoor air purification to reduce the ozone content. The surface can, for example, be applied by coating the component and processed by cold-gas spraying of, for example, particles made of MnO2, to which CeO2 is applied.
摘要:
A component has a catalyst surface including metal regions and regions of MnO2 contacting the former, wherein the metal regions are made of Co and/or Sn and/or Zn (or alloys of said metals). Said material pairings achieve a significantly improved catalytic effect in comparison to the pure metals. Said surfaces can be used, for example, in room air purification for reducing ozone content. The surface can be applied, for example, by coating the component, wherein the metal region and the region of MnO2 are applied in two layers.
摘要:
A ceramic layer is fabricated on a substrate by coating the substrate with a material containing chemical precursors of a ceramic. The precursors are transformed by a heat treatment into the ceramic to be fabricated. Different methods for heat insertion may be used for individual layers by absorbing particles, which are utilized in different concentrations or different chemical compositions. A targeted heat insertion even in lower layer regions, for example, by microwave animation, or ultraviolet or infrared light insertion is therefore possible. Beneficially, as a result, comparatively thick layers in particular can be fabricated by a single heat treatment layer.
摘要:
The invention relates to a component made from a substrate with a coating, whereby that coating forms a surface of the component with reduced wettability. The invention further relates to production of said component. The coating which forms a surface with projections and recesses, brings about a reduction in wettability, in particular, by means of an effect based on the properties of lotus blossom. According to the invention, a metal with antimicrobial properties, in particular silver is provided under the coating, which is not fully covered, in other words, regions remain free of the coating in which the surface of the component is formed by the antimicrobial properties.
摘要:
The invention relates to a surface comprising a microstructure that reduces adhesion and to a method for producing said microstructure. Microstructures of this type that reduce adhesion are known and are used, for example, to configure self-cleaning surfaces that us the Lotus effect. According to the invention, the surface is produced electrochemically by means of reverse pulse plating, the known microstructure being first produced and a nanostructure that is overlaid on the microstructure is produced at the same time or in a subsequent step. To achieve this for example, the pulse length of the current pulse that is used during the reverse pulse plating lies in the millisecond range and has a pulse length ratio greater than 1:3. The microstructure that has been produced, consisting of peaks and troughs is then overlaid with peaks and troughs of a smaller size order belonging to the nanostructure.
摘要:
The surface of a component includes metallic fractions of Ag and/or Ni, touching MnO2 fractions which provide an antimicrobial effect. When using toxicologically safe Ni, these antimicrobial surfaces can be used in the food industry, for example. The surface can, for example, be applied by way of a coating on the component with the metallic fraction and the MnO2 fraction applied in two layers.
摘要:
The invention relates to a method for generating an abrasive wear-resistant layer (13) on a substrate (11). According to the invention, said layer (13) consists of particles (14) of a ductile material, in particular Zn, wherein the parameters of the cold spraying process are set such that a comparatively loose laminate having pores (15) is formed by the spray particles (14). Said laminate advantageously and surprisingly exhibits high resistance to abrasive wear (for example by a particle (16)) because the layer (13) can avoid the attack by the particle (16) by plastic deformation and closure of the pores (15), whereby abrasive removal of the layer is advantageously low. The invention further relates to a use of a cold gas-sprayed layer as a protective layer against abrasive wear.
摘要:
The embodiments include a method for producing a coating through cold gas spraying. In the process, particles according to the embodiments are used which contain a photocatalytic material. In order to improve the effect of this photocatalytic material (such as titanium dioxide), a reactive gas can be added to the cold gas stream, the reactive gas being activated by a radiation source not shown, for example by UV light, on the surface of the coating that forms. This makes it possible to, for example, dose titanium dioxide with nitrogen. This allows the production of in situ layers having advantageously high catalytic effectiveness. The use of cold gas spraying has the additional advantage in that the coating can be designed to contain pores that enlarge the surface available for catalysis.
摘要:
A component part has a catalyst surface. This surface has metallic components and components of MnO2 (13) in contact with the former. The metallic components are preferably formed of Ag and/or Ni. These material pairs achieve a great improvement in catalyst action compared to the pure metals. Especially in the case of use of Ni, which is toxicologically safe, these surfaces, for example, may also find use in ambient air purification for reduction of the ozone content. The surface can be applied, for example, by a coating of the component part, in which case the metallic component and the component of MnO2 are applied in two layers.