Abstract:
Provided are an apparatus for receiving a quantum cryptographic key and an apparatus for transmitting and receiving a quantum cryptographic key at high speed without polarization drift of an optical pulse signal and phase drift of an interferometer. The apparatus for receiving a quantum key includes: a polarization-insensitive optical phase modulator parts for receiving an optical pulse signal, and modulating and outputting a phase of the optical pulse signal without being affected by the polarization state of the optical pulse signal; an asymmetric Mach-Zehnder interferometer for causing interference in and outputting the optical pulse signal received from the polarization-insensitive optical phase modulator parts; and a photon detectors for detecting the optical pulse signal received from the asymmetric Mach-Zehnder interferometer. According to the apparatuses, it is possible to perform quantum cryptography communication at high speed without being affected by polarization drift of an optical pulse signal and phase drift of an interferometer.
Abstract:
A high-speed wavelength selectable optical source and a method thereof are disclosed. The wavelength selectable optical source includes at least one optical source having a multimode oscillation spectrum, a demultiplexer and an optical switch for extracting light having a certain selected wavelength. A certain wavelength can be selected among the multimode wavelengths using the demultiplexer and the optical switch, and thus the wavelength can discontinuously be tuned at high speed. Also, by making the light having the selected wavelength incident to the multimode optical source, the power of the output light can uniformly be maintained and maximized through injection locking.
Abstract:
An apparatus and method for effectively transmitting a packet data and a control data of path information about the packet data in an optical packet data switching network. The method includes grouping a plurality of wavelengths into at least two wavelength bandwidths, each wavelength bandwidth being composed of neighboring wavelengths, and transmitting the optical packet data and the control data with wavelengths of different wavelength bandwidths respectively. Since the wavelength to transmit the optical packet data and the wavelength to transmit the control data has a difference from each other, a node receiving optical data easily divides the packet data and the control data.
Abstract:
A time and wavelength division multiplexed passive optical network where a central office has a downstream transmitter and an upstream receiver. The downstream transmitter multiplexes and transmits downstream optical signals in a time region. The upstream receiver de-multiplexes, in a wavelength region, an upstream optical signal. An optical network unit has a downstream receiver and an upstream transmitter, where the downstream receiver de-multiplexes, in the time region, the downstream optical signals from the central office. The upstream transmitter multiplexes the upstream optical signal in the wavelength region and transmits the signal to the central office. A remote node, having an optical distributor and a wavelength division multiplexer, is connected between the central office and the optical network unit. The optical distributor distributes the downstream optical signals from the central office. The wavelength division multiplexer multiplexes, in the wavelength region, the upstream optical signal from each optical network unit.
Abstract:
Apparatuses and methods are provided which suppress a surge component occurring at an optical amplifier on an optical path through which an optical burst signal is transmitted. An optical amplifier may experience a surge due to the power variation of the optical burst signal that is fed to the optical amplifier. To suppress such a surge component, a power corresponding to a number of wavelengths of an optical burst signal to be input is calculated. The optical amplifier is instructed to generate an optical signal with a power corresponding to a difference between a set value and the calculated power. The generated optical signal and the optical burst signal to be input are coupled and output according to the instruction. Thus, the optical amplifier can receive the optical signal with the constant power and the surge component at the optical amplifier can be suppressed.
Abstract:
An apparatus and method for effectively transmitting a packet data and a control data of path information about the packet data in an optical packet data switching network. The method includes grouping a plurality of wavelengths into at least two wavelength bandwidths, each wavelength bandwidth being composed of neighboring wavelengths, and transmitting the optical packet data and the control data with wavelengths of different wavelength bandwidths respectively. Since the wavelength to transmit the optical packet data and the wavelength to transmit the control data has a difference from each other, a node receiving optical data easily divides the packet data and the control data.
Abstract:
Provided is a polarization division multiplexed optical OFDM transmitter. The polarization division multiplexed optical OFDM transmitter includes a data demultiplexer, a training symbol generation unit and an optical up-converter and polarization division multiplexing unit. The data demultiplexer divides a transmission signal into a plurality of groups. The training symbol generation unit allocates a plurality of training symbols for each OFDM data which is included in the respective multiplexed groups, and allocates repetitive data in a time domain for the respective training symbols for data of 0 to periodically appear for the respective training symbols in a frequency domain. The optical up-converter and polarization division multiplexing unit performs optical frequency band conversion and polarization division multiplexing on an output of the training symbol generation unit to output a polarization division multiplexed optical OFDM signal corresponding to a plurality of polarization components.
Abstract:
Provided is an optical OFDM receiver. The optical OFDM receiver receives an optical signal dependent on the nonlinearity of a transmitter. The optical OFDM receives includes an optical down converter, a nonlinearity compensator, and an OFDM demodulator. The optical down converter converts the optical signal into an electrical signal. The nonlinearity compensator filters the electrical signal, for compensating distortion which is added to the optical signal when the transmitter performs optical modulation. The OFDM demodulator demodulates the distortion-compensated electrical signal in an OFDM scheme.
Abstract:
Provided is a polarization coding quantum cryptography system. The quantum cryptography includes a light source, a quantum channel, an optical path selector, and a path-dependent polarization selector. The light source generates a signal light. The quantum channel is used as a path to transmit the signal light to a receiver unit. The optical path selector is disposed between the light source and the quantum channel to transmit the signal light to one of a plurality of propagation paths. The path-dependent polarization selector is disposed between the optical path selector and the quantum channel. Herein, the path-dependent polarization selector is configured to determine the polarization direction of the signal light according to the propagation path of the signal light.
Abstract:
Disclosed are a method and an apparatus for transmitting and receiving coherent optical OFDM. The apparatus includes: a transmitted OFDM digital signal processing unit outputting an in-phase (I) component digital signal and a quadrature phase (Q) component digital signal; a digital-analog converter converting the in-phase (I)-component digital signal and the quadrature-phase (Q)-component digital signal into an in-phase (I)-component analog signal and a quadrature-phase (Q)-component analog signal, respectively; an adder adding an additional pilot tone signal to each of the in-phase (I)-component analog signal and the quadrature-phase (Q)-component analog signal outputted from the digital-analog converter; and an optical I/Q modulator up-converting the in-phase (I)-component analog signal added with the additional pilot tone signal and the quadrature-phase (Q)-component analog signal added with the additional pilot tone signal to an optical domain to output a coherent optical OFDM signal including the additional pilot tone signal.