Abstract:
An anti-fuse is formed with a transistor with a doped channel. The anti-fuse will not generate a non-linear current after the anti-fuse is blown. The anti-fuse is used in memory cells of one-time programmable (OTP) memory. The OTP memory utilizes a p-type transistor and an n-type transistor to program the anti-fuse. The anti-fuse has the doped channel, so a current will not flow through the p/n junction between the substrate and two doped regions of the anti-fuse to form a non-linear current after the anti-fuse is blown. Thus, the memory cells of the OTP memory can be programmed correctly.
Abstract:
A method and apparatus for managing changes to computerized medical protocols is provided. Each change to a medical protocol results in a new binary file being generated. Each binary file associated with the protocol then has a version number, which may be divided into two parts: a major version number and a minor version number. The default is that major changes to the medical protocol result in an incremented major number while minor changes to the medical protocol result in an incremented minor number. At assignment time, the version of the medical protocol to be assigned is assumed to be the one with the highest major number. At execution time, the version of the medical protocol to be executed is assumed to be the one with the highest minor number. This allows for the constant modification of treatment protocols without interfering with the protocols of patients already receiving treatment.
Abstract:
An information handling system (IHS) includes an IHS chassis having a processor and defining a battery housing. An IHS connector is located adjacent the battery housing and is electrically coupled to the processor. A battery is located in the battery housing and includes a battery chassis that houses at least one battery cell. A battery connector is electrically coupled to the at least one battery cell and engages the IHS connector. The battery connector is moveably coupled to the battery chassis through a battery connector coupling that allows the battery connector to move relative to the battery chassis when the battery connector engages the IHS connector.
Abstract:
A workflow server system is provided which uses an XML namespace designed to execute various workflow server services. The workflow server may include an XML Execution Engine, which uses the XML namespace to execute commands issued by the user from a web browser. The use of the XML namespace allows users to easily modify the user interface and how content is handled without needing to contact the manufacturer of the workflow server or engage in a massive redesign of the server. The Workflow Server passes a user command to an XML Execution Engine, accesses an XML namespace to determine how to execute said command, executes said command, accessing a database if necessary, and returns an XML document back to user for display on the user's web browser, said XML document containing a reference to an XSL file.
Abstract:
An apparatus and method for providing a medical protocol graphic user interface which graphically merges medical treatments is provided. The apparatus and method generates a plurality of graphic images representing a medical treatment plan. The graphic images are presented in a chronological order based in real or virtual time slots and may be viewed in either a flow chart or a chart view format. The chart view format may be used by healthcare professionals to enter data. The graphical images include an order node, result node and flow node. The various nodes may be connected to form a healthcare plan assigned to a patient. Two separate medical treatment plans may be combined with duplicate or conflicting orders removed.
Abstract:
A computer system is programmed to display a set of order triplet icons which are linked together to represent a medical treatment plan. Each of the order triplet icons represent a step within the medical treatment plan. Each link between two order triplet icons, such as a first order triplet icon and a second order triplet icon, represents a sequence between two steps within the medical treatment plan. Each sequence, as represented by a link, includes a rule which may be configured to have a time delay. When configured to have a time delay, the second order triplet icon is activated upon expiration of the time delay, forming a sequence from the first order triplet icon to the second order triplet icon. The computer system may also be programmed to display a medical treatment plan in process flow form, referred to as a publisher's view. The process flow shows the contents of a set of order triplet icons which may include at least one healthcare activity and at least one rule, and the relationship between the icons in the medical protocol.
Abstract:
A method for processing data in a computer containing a processor is described, wherein the method comprises the steps of providing at least one program object having an instruction set, and at least one set of rules responsive to input data, the set of rules being used by the processor to determine program instructions to be issued, providing a form-based user interface, accepting input data from a user of a computer system through the forms-based user interface, causing the processor to compare the input data to one or more of the rules to determine at least one next program instruction to be executed, and then causing said at least one next program instruction to be executed. The forms-based user interface comprises standard Hyper-Text Markup Language constructs, together with new work flow interface commands which, depending on the information submitted to or received from the work flow process through one or more user interfaces, may alter that work flow process.
Abstract:
An apparatus and method for providing a medical protocol graphic user interface is provided. The apparatus and method generates a plurality of graphic images representing a medical treatment plan. The graphic images are presented in a chronological order based on real or virtual time slots and may be viewed in either a flow chart or a chart view format. The view chart format may be used by healthcare professionals to enter data. The graphical images include an order node, result node and flow node. The various nodes may be connected to form a healthcare plan assigned to a patient. Costs may be assigned to each order and various costs of various treatments may be determined. Patient plans may be transferred or modified by other healthcare professionals.
Abstract:
An apparatus and method for providing a medical protocol graphic user interface which graphically merges medical treatments is provided. The apparatus and method generates a plurality of graphic images representing a medical treatment plan. The graphic images are presented in a chronological order based on real or virtual time slots and may be viewed in either a flow chart or a chart view format. The view chart format may be used by healthcare professionals to enter data. The graphical images include an order node, result node and flow node located in certain time slots. The various nodes may be connected to form a healthcare plan assigned to a patient. A result node may be split into two result nodes. Each result node may be positioned in a different time slot corresponding to when results are available.
Abstract:
A method of fabricating an anti-fuse includes firstly forming a dielectric layer on a substrate having a first conductive type. Next, a conductive layer is formed on the dielectric layer. A first ion implantation process is then performed, such that the conductive layer has the first conductive type. Thereafter, the conductive layer and the dielectric layer are patterned to form a gate and a gate dielectric layer. The gate and the gate dielectric layer together construct a gate structure. Finally, two source/drain regions having a second conductive type are formed in the substrate at respective sides of the gate. Besides, a method of programming an anti-fuse includes firstly applying a voltage to a gate to break down a gate dielectric layer. The gate and a substrate are then electrically conducted or a P/N forward bias is then formed in a P/N junction after the breakdown of the gate dielectric layer.