Abstract:
A method and apparatus for measuring strain distribution on a deformed surface utilizes a video or photographic camera for taking two images of the surface which are taken at an angle to each other. The surface carries a deformed grid which has grid points that are digitized using images from the camera. The digitized points each form one set of two-dimensional coordinates. Each point of the one set of coordinates is correlated with a corresponding point of the other set. The two sets of two-dimensional coordinates are then used in conjunction with the geometrical relationship between the images to calculate a single set of three-dimensional coordinates for the grid points. The three-dimensional coordinates are then used in groups of three adjacent points to calculate strain over the surface.
Abstract:
A small amount of lanthanum and praseodymium will substantially improve the slow strain rate ductility of certain zirconium-base alloys and these new alloys and certain other zirconium-base alloys in the irradiated condition can under certain circumstances have surprising load-carrying capacity and service life. Such other alloys contain yttrium or calcium instead of lanthanum or praseodymium.
Abstract:
A method for manufacturing a solar cell includes forming a passivation layer on a rear surface of a substrate of a first conductivity type; forming connecting electrodes having a plurality of electrical contacts that are in contact with the rear surface of the substrate by using a first paste for a first temperature firing on portions of the passivation layer; and forming a rear electrode layer by using a second paste for a second temperature firing on the passivation layer and the plurality of electrical contacts, wherein a temperature of the second temperature firing is lower than a temperature of the first temperature firing.
Abstract:
A solar cell and a method of manufacturing the same are disclosed. The solar cell includes a substrate of a first conductive type; an emitter layer of a second conductive type opposite the first conductive type on the substrate; a first electrode electrically connected to the emitter layer; a passivation layer on the substrate; a second electrode conductive layer on the passivation layer, the second electrode conductive layer including at least one second electrode electrically connected to the substrate through the passivation layer; and a second electrode current collector electrically connected to the second electrode conductive layer.
Abstract:
A method for manufacturing a solar cell may include forming an emitter region that forms a p-n junction with a semiconductor substrate of a first conductive type, forming a passivation layer on the semiconductor substrate, forming a dopant layer containing impurities of the first conductive type on the passivation layer, and locally forming a back surface field region at the semiconductor substrate by irradiating laser beams onto the semiconductor substrate to diffuse the impurities into the semiconductor substrate.
Abstract:
A solar cell and a method for manufacturing the same are disclosed. The method for manufacturing the solar cell includes forming an emitter region of a second conductive type opposite a first conductive type at a first surface of a substrate of the first conductive type by using an ion implantation method, forming a passivation layer on a second surface positioned opposite the first surface of the substrate, and forming a first electrode, which is positioned on the first surface of the substrate and is connected to the emitter region, and a second electrode, which is positioned on the second surface of the substrate and is selectively connected to the substrate through the passivation layer.
Abstract:
A solar cell and a method of manufacturing the same are provided. The solar cell includes a semiconductor unit, an electrode, and a passivation layer between the semiconductor unit and the electrode. The passivation layer includes a first layer containing silicon oxide (SiOx), a second layer containing silicon nitride (SiNx), and a third layer containing silicon oxide (SiOx) or silicon oxynitride (SiOxNy).
Abstract translation:提供太阳能电池及其制造方法。 太阳能电池包括在半导体单元和电极之间的半导体单元,电极和钝化层。 钝化层包括含有氧化硅(SiO x)的第一层,含有氮化硅(SiNx)的第二层和含有氧化硅(SiO x)或氮氧化硅(SiO x N y)的第三层。
Abstract:
A solar cell and a method of manufacturing the same are disclosed. The solar cell includes a substrate of a first conductive type; an emitter layer of a second conductive type opposite the first conductive type on the substrate; a first electrode electrically connected to the emitter layer; a passivation layer on the substrate; a second electrode conductive layer on the passivation layer, the second electrode conductive layer including at least one second electrode electrically connected to the substrate through the passivation layer; and a second electrode current collector electrically connected to the second electrode conductive layer.
Abstract:
A solar cell and a method of manufacturing the same are disclosed. The solar cell includes a substrate of a first conductive type; an emitter layer of a second conductive type opposite the first conductive type; at least one first electrode on the emitter layer and electrically connected to the emitter layer; a passivation layer on the substrate, the passivation layer including a plurality of exposing portions to expose respective portions of the substrate; and an electrode conductive layer on the passivation layer, the electrode conductive layer including a plurality of second electrodes electrically connected to the respective plurality of exposing portions, wherein in each of the plurality of exposing portions, an area of an exposed surface of the substrate is greater than an area of a virtual interface that is coplanar with an interface between the substrate and the passivation layer and which is located over the exposed surface.
Abstract:
A solar cell and a method for manufacturing the same are discussed. The solar cell includes a substrate of a first conductive type, an emitter region of a second conductive type opposite the first conductive type positioned at the substrate, a first electrode which is positioned on the substrate and is connected to the emitter region, at least one second electrode which is positioned on the substrate and is connected to the substrate, and an aluminum oxide layer positioned on a front surface and a back surface of the substrate excluding areas of the substrate on which the first electrode and the at least one second electrode are formed.