摘要:
A method and device are provided to generate an aerosol having a desired particle sizes, i.e., from molecular to about 10 microns, which can be used to effectively deliver a physiologically active compound to organs and tissues such as the lung, eye, mucosa and skin. The aerosol is formed through vaporization of the compound while mixing the resulting vapor with a gas, in a ratio, to form the desired particle size when a stable concentration of particles in the gas is reached.
摘要:
The present invention relates to the inhalation delivery of aerosols containing small particles. Specifically, it relates to a method of forming an aerosol for use in inhalation therapy. In a method aspect of the present invention, a method of forming an aerosol for use in inhalation therapy is provided. The method involves the following steps: (a) heating a substrate coated with a composition comprising a drug at a rate greater than 1000° C./s, thereby forming a vapor; and, (b) allowing the vapor to cool, thereby forming an aerosol, which is used in inhalation therapy. In another method aspect of the present invention, a method of forming an aerosol for use in inhalation therapy is provided. The method involves the following steps: (a) heating a substrate coated with a composition comprising a drug to form a vapor, wherein the coated composition is in the form of a film less than 10μ thick; and, (b) allowing the vapor to cool, thereby forming an aerosol, which is used in inhalation therapy. In another method aspect of the present invention, a method of forming an aerosol for use in inhalation therapy is provided. The method involves the following steps: (a) heating a substrate coated with a composition comprising a drug to form a vapor in less than 100 milliseconds, wherein the vapor has a mass greater than 0.1 mg; and, (b) allowing the vapor to cool, thereby forming an aerosol, which is used in inhalation therapy.
摘要:
The present invention relates to the inhalation delivery of aerosols containing small particles. Specifically, it relates to a method of forming an aerosol for use in inhalation therapy. In a method aspect of the present invention, a method of forming an aerosol for use in inhalation therapy is provided. The method involves the following steps: (a) heating a substrate coated with a composition comprising a drug at a rate greater than 1000° C./s, thereby forming an vapor; and, (b) allowing the vapor to cool, thereby forming an aerosol, which is used in inhalation therapy. In another method aspect of the present invention, a method of forming an aerosol for use in inhalation therapy is provided. The method involves the following steps: (a) heating a substrate coated with a composition comprising a drug to form a vapor, wherein the coated composition is in the form of a film less than 10 μ thick; and, (b) allowing the vapor to cool, thereby forming an aerosol, which is used in inhalation therapy. In another method aspect of the present invention, a method of forming an aerosol for use in inhalation therapy is provided. The method involves the following steps: (a) heating a substrate coated with a composition comprising a drug to form a vapor in less than 100 milliseconds, wherein the vapor has a mass greater than 0.1 mg; and, (b) allowing the vapor to cool, thereby forming an aerosol, which is used in inhalation therapy.
摘要:
There is disclosed herein a system for providing control of multiple functions needed to perform eye surgery. A microprocessor based system controls a vacuum generation system using venturis and linear valves and a pneumatic system for driving vitrectomy probes and pneumatic scissors in either a variable frequency, multicut mode or a proportional cut mode where the cutting pressure is proportional to the position of a foot operated position sensor. The frequency of the vitrectomy probe cutting action can also be controlled and the level of vacuum can be controlled from a foot operated position sensor which can also be used to turn on or off a fragmentation device. The footswitch can also be used to turn irrigation fluid on or off, and the flow rate can be controlled from a control on the front panel. By making a certain foot motion in any certain aspiration modes, reflux of the aspiration line can be controlled. The vacuum level is continuously monitored over all aspiration conditions and adjusted to stay as close as possible to the desired vacuum level. A cassette proximity sensing system senses the presence of a cassette, and aids the user in drawing in and latching the cassette. The vacuum integrity of the cassette is automatically checked by the microprocessor each time one is drawn into the machine. The microprocessor also monitors the cassette for fullness and initiates a transfer to empty one bottle of the cassette into another bottle for storage when the first bottle becomes full. A back-up system checks the accuracy of cassette liquid level sensing apparatus by double checking for liquid in the line leading to the vacuum generation system. If water is detected, a fluid transfer from one bottle of the cassette to the other is initiated.
摘要:
There is disclosed herein a system for providing control of multiple functions needed to perform eye surgery. A microprocessor based system controls a vacuum generation system using venturis and linear valves and a pneumatic system for driving vitrectomy probes and pneumatic scissors in either a variable frequency, multicut mode or a proportional cut mode where the cutting pressure is proportional to the position of a foot operated position sensor. The frequency of the vitrectomy probe cutting action can also be controlled and the level of vacuum can be controlled from a foot operated position sensor which can also be used to turn on or off a fragmentation device. The footswitch can also be used to turn irrigation fluid on or off, and the flow rate can be controlled from a control on the front panel. By making a certain foot motion in any certain aspiration modes, reflux of the aspiration line can be controlled. The vacuum level is continuously monitored over all aspiration conditions and adjusted to stay as close as possible to the desired vacuum level. A cassette proximity sensing system senses the presence of a cassette, and aids the user in drawing in and latching the cassette. The vacuum integrity of the cassette is automatically checked by the microprocessor each time one is drawn into the machine. The microprocessor also monitors the cassette for fullness an initiates a transfer to empty one bottle of the cassette into another bottle for storage when the first bottle becomes full. A back-up system checks the accuracy of cassette liquid level sensing apparatus by double checking for liquid in the line leading to the vacuum generation system. If water is detected, a fluid transfer from one bottle of the cassette to the other is initiated.
摘要:
The present invention relates to the inhalation delivery of aerosols containing small particles. Specifically, it relates to a method of forming an aerosol for use in inhalation therapy. In a method aspect of the present invention, a method of forming an aerosol for use in inhalation therapy is provided. The method involves the following steps: (a) heating a substrate coated with a composition comprising a drug at a rate greater than 1000° C./s, thereby forming an vapor; and, (b) allowing the vapor to cool, thereby forming an aerosol, which is used in inhalation therapy. In another method aspect of the present invention, a method of forming an aerosol for use in inhalation therapy is provided. The method involves the following steps: (a) heating a substrate coated with a composition comprising a drug to form a vapor, wherein the coated composition is in the form of a film less than 10μ thick; and, (b) allowing the vapor to cool, thereby forming an aerosol, which is used in inhalation therapy. In another method aspect of the present invention, a method of forming an aerosol for use in inhalation therapy is provided. The method involves the following steps: (a) heating a substrate coated with a composition comprising a drug to form a vapor in less than 100 milliseconds, wherein the vapor has a mass greater than 0.1 mg; and, (b) allowing the vapor to cool, thereby forming an aerosol, which is used in inhalation therapy.
摘要:
The present invention relates to the inhalation delivery of aerosols containing small particles. Specifically, it relates to a device that forms drug containing aerosols for use in inhalation therapy. In a device aspect of the present invention, a device for delivering drug containing aerosols for inhalation therapy is provided. The device includes a housing and an airway that has a gas/vapor mixing airway. The airway further includes a subassembly, which has a metallic substrate coated on its surface with a composition comprising a drug.
摘要:
The present invention relates to the inhalation delivery of aerosols containing small particles. Specifically, it relates to a method of forming an aerosol for use in inhalation therapy. In a method aspect of the present invention, a method of forming an aerosol for use in inhalation therapy is provided. The method involves the following steps: (a) heating a substrate coated with a composition comprising a drug at a rate greater than 1000° C./s, thereby forming an vapor; and, (b) allowing the vapor to cool, thereby forming an aerosol, which is used in inhalation therapy. In another method aspect of the present invention, a method of forming an aerosol for use in inhalation therapy is provided. The method involves the following steps: (a) heating a substrate coated with a composition comprising a drug to form a vapor, wherein the coated composition is in the form of a film less than 10μ thick; and, (b) allowing the vapor to cool, thereby forming an aerosol, which is used in inhalation therapy. In another method aspect of the present invention, a method of forming an aerosol for use in inhalation therapy is provided. The method involves the following steps: (a) heating a substrate coated with a composition comprising a drug to form a vapor in less than 100 milliseconds, wherein the vapor has a mass greater than 0.1 mg; and, (b) allowing the vapor to cool, thereby forming an aerosol, which is used in inhalation therapy
摘要:
There is disclosed herein a system for providing control of multiple functions needed to perform eye surgery. A microprocessor based system controls a vacuum generation system using venturis and linear valves and a pneumatic system for driving vitrectomy probes and pneumatic scissors in either a variable frequency, multicut mode or a proportional cut mode where the cutting pressure is proportional to the position of a foot operated position sensor. The frequency of the vitrectomy probe cutting action can also be controlled and the level of vacuum can be controlled from a foot operated position sensor which can also be used to turn on or off a fragmentation device. The footswitch can also be used to turn irrigation fluid on or off, and the flow rate can be controlled from a control on the front panel. By making a certain foot motion in any certain aspiration modes, reflux of the aspiration line can be controlled. The vacuum level is continuously monitored over all aspiration conditions and adjusted to stay as close as possible to the desired vacuum level. A cassette proximity sensing system senses the presence of a cassette, and aids the user in drawing in and latching the cassette. The vacuum integrity of the cassette is automatically checked by the microprocessor each time one is drawn into the machine. The microprocessor also monitors the cassette for fullness an initiates a transfer to empty one bottle of the cassette into another bottle for storage when the first bottle becomes full. A back-up system checks the accuracy of cassette liquid level sensing apparatus by double checking for liquid in the line leading to the vacuum generation system. If water is detected, a fluid transfer from one bottle of the cassette to the other is initiated.
摘要:
A variable pneumatic output device for use with ophthmalic micro-surgical instruments including a reversible servo motor which operates in response to instructions from an electronic control circuit. The rotatable drive shaft of the servo motor is operatively connected to the adjustable level control of a precision pressure regulator which operates between a fully open level and a fully closed level. The pressure regulator is operatively connected between a pressurized air source and the pneumatically driven micro-surgical instrument and according to the instructions of the electronic control circuitry, the servo motor, through the connecting drive to the regulator, adjusts the level of pneumatic output to the surgical instrument.