Abstract:
A method and apparati are provided for making a reinforced ply having a reduced gauge thickness and reduced cord spacing. The reduced gauge, reduced epi ply may be formed using a calendering system or a cross feed extruder system. The cords may be flush with the outer rubber surface or may protrude from the outer rubber surface. An optional skim coat of rubber may cover the cords to protect them from being dislodged during manufacturing.
Abstract:
A tire having an outside-in ply construction is provided which torques the tire bead into the rim of the wheel to which it is mounted. The tire has first and second axially-spaced bead cores, a carcass having at least one belt extending under a tread, and a first ply layer having first and second ends. A first end is located axially outside and adjacent a first bead core, and a second end folds from a position axially outside a second bead core to a position axially inside and around the second bead core. The carcass further comprises a second ply layer having first and second ends, a first end is located axially outside and adjacent the second bead core, and a second end that folds from a position axially outside a first bead core to a position axially inside and around the first bead core. The tire may also comprise a first and second axially-spaced bead core, a carcass having at least one belt extending under a tread, and a first ply layer having first and second ends, a first end is located axially outside and adjacent a first bead core, and a second end that is located axially outside and adjacent a second bead core. The carcass further comprises first and second shoulder ply layers each shoulder ply layer having first and second ends, a first end is located under the tread belt, the shoulder ply extending down the side wall region with the second end folding from a position axially outside a respective bead core to a position axially inside and around the bead core.
Abstract:
An apparatus for making a reinforced elastomeric fabric having a gauge thickness G and a cord spacing S, the apparatus comprising: a die having a plurality of holes for receiving a reinforcement cord, the holes providing a cord spacing of about S/2, a first and second calender roll located adjacent the die, the die having a end plate having a slot wherein the slot is located adjacent a calender roll so that the reinforcement cords are pressed into engagement with a ribbon of elastomeric material, the calender rolls being spaced to provide a gauge thickness of about G/2, the apparatus further comprising a cutter for cutting the ribbon of reinforced elastomeric material into segments having a length L, each segment having a width W, each segment having lateral edges, said apparatus further comprising a pick arm for placing a plurality of segments onto a conveyor so that the lateral ends of adjacent segments are lap spliced together, the lap splice having a width W/2.
Abstract:
A method of making a reinforced elastomeric fabric having a gauge thickness G and a cord spacing S, the method comprising the steps of: providing a plurality of reinforcement cords having a cord spacing of about S/2, pressing the reinforcement cords into engagement with a ribbon of elastomeric material having a gauge thickness of about G/2; cutting the ribbon of reinforced elastomeric material into segments having a length L, each segment having a width W, each segment having lateral edges, and joining a plurality of segments together.
Abstract:
A method and apparatus is provided for cutting an elastomeric laminate that may include a layer of reinforcement cords, into a desired length without cutting through the cords. The method includes the step of cutting through the gum portion of the elastomeric composite material at a desired skive angle, and then opening up the skived cut. Next, the cord reinforcement layer is cut without severing the reinforcement cords. An elastomeric composite strip cut to the desired length is produced and has cut ends. One of the cut ends has the gum portion cut at a desired skive angle adjacent an overhang portion of the reinforcement layer. The opposite end of the elastomeric composite segment also has a skived portion to mate with the skived portion of the first cut end, and a gap in the cord ply to mate with the cord overhang of the first end, resulting in a splice. An improved anvil having independently controlled vacuum zones is also provided, as well as improved cutting mechanisms.
Abstract:
A method for recording data on an optical medium is disclosed. In one embodiment, the method includes receiving main data from a data source, determining a plurality of data frame values in response to the main data, inverting at least one selected bit in at least one of the data frame values to generate a plurality of encoded data frames, scrambling the encoded data frames by a feedback shift register to generate scrambled data frames, generating ECC values in response to the scrambled data frames, adding the ECC values to the scrambled data frames to generate an ECC block, rearranging the ECC block to generate a plurality of recording frames, encoding the recording frames by an eight-to-sixteen modulation (ESM) encoder to generate code words, adding sync values to the code words to generate a plurality of physical sectors, and recording the physical sectors on the optical medium. A complementary method for reading and decoding data from an optical medium is also disclosed. These complementary encoding and decoding schemes provide a method for creating and reading proprietary format DVDs which may not be read or copied by conventional DVD players. These encoding and decoding schemes result from relatively minor modifications to existing DVD standards, allowing many standard system components to be used and thereby making the encoding/decoding system relatively easy and inexpensive to implement.
Abstract:
A method and apparatus is provided for cutting an elastomeric laminate that may include a layer of reinforcement cords, into a desired length without cutting through the cords. The method includes the step of cutting through the gum portion of the elastomeric composite material at a desired skive angle, and then opening up the skived cut. Next, the cord reinforcement layer is cut without severing the reinforcement cords. An elastomeric composite strip cut to the desired length is produced and has cut ends. One of the cut ends has the gum portion cut at a desired skive angle adjacent an overhang portion of the reinforcement layer. The opposite end of the elastomeric composite segment also has a skived portion to mate with the skived portion of the first cut end, and a gap in the cord ply to mate with the cord overhang of the first end, resulting in a splice. An improved anvil having independently controlled vacuum zones and adjustable width vacuum zones is also provided, as well as improved cutting mechanisms.
Abstract:
A frame joint for bicycles and the like includes a stub insert consisting of a base, a stub protruding from the base, and an annular shoulder at the junction between the base and the stub; a connecting member having a tubular end with an annular end face telescoping over the stub in a press fit; adhesive bonding the tubular end to the stub; and an annular collet positioned on the stub between the end face and the shoulder. The collet includes an inner end having a first lip portion which extends about and overlaps a periphery of the base adjacent to the shoulder and an outer end having a second lip portion which is beveled in a concave fashion to overlap and receive the end face of the connecting member. The first and second lip portions are joined by a continuous outer wall having a diameter greater than that of the tube end and the base, and an interior wall extending between the first and second lip portions having a diameter less than that of the tube end and base.
Abstract:
A method and apparatus is provided for cutting an elastomeric laminate that may include a layer of reinforcement cords, into a desired length without cutting through the cords. The method includes the step of cutting through the gum portion of the elastomeric composite material at a desired skive angle, and then opening up the skived cut. Next, the cord reinforcement layer is cut without severing the reinforcement cords. An elastomeric composite strip cut to the desired length is produced and has cut ends. One of the cut ends has the gum portion cut at a desired skive angle adjacent an overhang portion of the reinforcement layer. The opposite end of the elastomeric composite segment also has a skived portion to mate with the skived portion of the first cut end, and a gap in the cord ply to mate with the cord overhang of the first end, resulting in a splice. An improved anvil having independently controlled vacuum zones is also provided, as well as improved cutting mechanisms.
Abstract:
A method of producing a tire having an outside-in ply construction is provided. The method includes the steps of: providing a tire building drum; laying an inner liner on said drum, applying a first layer of ply on the right hand side of the drum so that a first end of the first ply layer is located over a first bead area while the second end of the first ply layer extends laterally outwards therefrom, applying a first bead over the first bead area and ply end; applying a second layer of ply on the left hand side of the drum so that one end of the second ply layer is located over a second bead area, while the second end extends laterally outwards therefrom; applying a second bead over the second toeguard and end of second ply layer; folding the second end of the first layer of ply over the first bead until the second end of the first layer of ply contacts the second bead; folding the second layer of ply over the second bead and apex so that the outer end of the second layer of ply is located over the first bead; and shaping the carcass into a toroid. A second method of building a tire carcass comprising the steps outlined above, with an additional third layer of ply being added that has lateral ends extending from said first bead to said second bead. The tire carcass may additionally comprise one or more pairs of sidewall inserts.