Abstract:
A faucet mounted water filter is described, comprising a base having a water inlet upstanding from a first end of the base and attachable to a water faucet, a first water outlet downwardly directed from the first end of the base for discharging unfiltered water, a second water outlet downwardly directed from a second end of the base for discharging filtered water and a filter cartridge seat disposed on the second end of the base, a replaceable filter cartridge comprising a unitary subassembly including a closed outer cylindrical shell having top and side walls defining a chamber therein, a filter element disposed with the filter chamber and a filter cartridge base, a latch device for demountably securing the filter cartridge in the housing cartridge seat, a diverter valve for selectively permitting the flow of water through the housing first water outlet and the filter cartridge, and an end-of-use indicator for determining the status of the filter element during use.
Abstract:
A faucet mounted water filter is described, comprising a base having a water inlet upstanding from a first end of the base and attachable to a water faucet, a first water outlet downwardly directed from the first end of the base for discharging unfiltered water, a second water outlet downwardly directed from a second end of the base for discharging filtered water and a filter cartridge seat disposed on the second end of the base, a replaceable filter cartridge comprising a unitary subassembly including a closed outer cylindrical shell having top and side walls defining a chamber therein, a filter element disposed with the filter chamber and a filter cartridge base, latch means for demountably securing the filter cartridge in the housing cartridge seat, a diverter valve for selectively permitting the flow of water through the housing first water outlet and the filter cartridge, and an end-of-use indicator for determining the status of the filter element during use.
Abstract:
The invention provides a cleaning method in which a solvent such as densified carbon dioxide can be used for rapid and efficient cleaning, but with decreased damage to solid components such as buttons. The method comprises contacting a substrate to be cleaned with a first fluid, removing the first fluid from contact with the substrate while replacing with a second fluid, and recovering the substrate substantially free of the first and second fluids and from the contaminant. The first fluid is a densified gas while the second fluid is a compressed gas. A preferred embodiment of the method includes the use of a pretreatment designed for compatibility with the densified first fluid.
Abstract:
Aqueous peroxide bleaching compositions including organic components such as surfactants, fluorescent whiteners and dyes are effectively stabilized by the addition of a stabilizing system comprising stabilizing effective amounts of a heavy metal chelating or sequestering agent and an aromatic amine free radical scavenging agent. Both agents must be present to achieve maximum stability. The aromatic amine free radical scavenging agent is preferably a primary or secondary aryl amine having at least one hydrogen on the nitrogen of the amine. The stabilizing system stabilizes the organic component as well as the peroxide oxidizing agent.
Abstract:
A thickened cleaning composition for laundry products incorporates low levels of a fluorescent whitening agent or dye, a surfactant, an acidic pH adjusting agent and an insoluble peracid precursor. At the acidic pH, the fluorescent whitening agent precipitates as a colloidal particle, and is stabilized by associating with the surfactant, resulting in thickening. The precursor is stably suspended in its inactive form in the thickener, and provides oxidizing power as the corresponding peracid is formed when added to an alkaline wash or rinse solution. The composition preferably is formulated with an acidic soluble bleach source and most preferably with a peroxygen bleach.
Abstract:
A dry cleaning system particularly suited for employing supercritical CO.sub.2 as the cleaning fluid consisting of a sealable cleaning vessel containing a rotatable drum adapted for holding soiled substrate, a cleaning fluid storage vessel, and a gas vaporizer vessel for recycling used cleaning fluid is provided. The drum is magnetically coupled to a motor so that it can be rotated during the cleaning process. The system is adapted for automation which permits increased energy efficiency as the heating and cooling effect associated with CO.sub.2 gas condensation and expansion can be channeled to heat and cool various parts of the system.
Abstract:
A three-stage, sequentially produced graft polymer comprises (A) a non-rubbery, hard first stage polymer formed by the sequential polymerization of a monomer charge of 50 to 100 weight percent of a vinylaromatic compound, 0 to 50 weight percent of a different monovinylidene monomer interpolymerizable therewith, and 0 to 10 weight percent of a polyfunctional crosslinking monomer based on the weight of the monomer charge; (B) a second stage rubbery polymer formed by sequentially polymerizing in the presence of the hard polymer Stage (A) a second monomer charge of 50 to 100 weight percent of butadiene, isoprene, chloroprene, an alkyl acrylate or mixtures thereof wherein the alkyl group of the alkyl acrylate has about 3 to 8 carbon atoms, 0 to 50 weight percent of a monovinylidene monomer interpolymerizable therewith, and 0 to 10 weight percent of a polyfunctional crosslinking agent; and (C) a third stage polymer formed by sequentially polymerizing in the presence of the Stage (A) and Stage (B) polymer product a monomer charge of 50 to 100 weight percent of an alkyl methacrylate wherein the alkyl group has about 1 to 4 carbon atoms, 0 to 50 weight percent of a vinylidene monomer interpolymerizable therewith, and 0 to 10 weight percent of a polyfunctional crosslinking monomer, and/or 0 to 1.0 weight percent of an alkyl mercaptan of 3 to 12 carbon atoms. Preferably the polymer is used as a modifier for vinyl halide polymers. When so used, the refractive index of the first two stages of the graft polymer is substantially equal to the refractive index of the vinyl halide polymer.
Abstract:
A three-stage, sequentially produced graft polymer comprises (A) a non-rubbery, hard first stage polymer formed by the sequential polymerization of a monomer charge of 50 to 100 weight percent of a vinylaromatic compound, 0 to 50 weight percent of a different monovinylidene monomer interpolymerizable therewith, and 0 to 10 weight percent of a polyfunctional crosslinking monomer based on the weight of the monomer charge; (B) a second stage rubbery polymer formed by sequentially polymerizing in the presence of the hard polymer Stage (A) a second monomer charge of 50 to 100 weight percent of butadiene, isoprene, chloroprene, an alkyl acrylate or mixtures thereof wherein the alkyl group of the alkyl acrylate has about 3 to 8 carbon atoms, 0 to 50 weight percent of a monovinylidene monomer interpolymerizable therewith, and 0 to 10 weight percent of a polyfunctional crosslinking agent; and (C) a third stage polymer formed by sequentially polymerizing in the presence of the Stage (A) and Stage (B) polymer product a monomer charge of 50 to 100 weight percent of an alkyl methacrylate wherein the alkyl group has about 1 to 4 carbon atoms, 0 to 50 weight percent of a vinylidene monomer interpolymerizable therewith, and 0 to 10 weight percent of a polyfunctonal crosslinking monomer, and/or 0 to 1.0 weight percent of an alkyl mercaptan of 3 to 12 carbon atoms. Preferably the polymer is used as a modifier for vinyl halide polymers. When so used, the refractive index of the first two stages of the graft polymer is substantially equal to the refractive index of the vinyl halide polymer.
Abstract:
The invention provides a cleaning agent and method for removing stains from fabrics comprising a combination of dense gas, a source of hydrogen peroxide and an organic bleach activator therefor.
Abstract:
A thickening system for laundry products incorporates low levels of a fluorescent whitening agent or dye, a surfactant and an acidic pH adjusting agent. At the acidic pH, the fluorescent whitening agent precipitates as a colloidal particle, and is stabilized by associating with the surfactant, resulting in thickening. Optionally, a C.sub.6-18 soap synergistically increases viscosity. The thickening system may be formulated with a bleaching product and preferably with a peroxide bleach product.