Abstract:
The present invention includes a method of optimizing a transmission mode of wirelessly transmitted data. The method includes selecting a first transmission mode based on a predetermined channel database and a first channel characterization. The first channel characterization can be based upon signals transmitted in an initial mode. An error factor is generated based on a difference between an estimated performance characteristic, and an expected performance characteristic. A subsequent transmission mode is selected based upon the predetermined channel database, the error factor and a subsequent channel characterization. The predetermined channel database can include a predetermined look-up-table that provides transmission mode selections based upon the channel characterizations. The look-up-table generally includes a plurality of quality parameter thresholds that determine the selection of a transmission mode. Another method includes receiving transmission signals that include data encoded in an initial transmission mode. A first quality parameter of the received transmission signals is measured. A subsequent transmission mode is selected based upon the quality parameter. Transmission signals are received having data encoded in the subsequent transmission mode. A second quality parameter is measured. A parameter is adjusted within selection criteria of another subsequent transmission mode based upon the second quality parameter.
Abstract:
The present invention includes a method of optimizing a transmission mode of wirelessly transmitted data. The method includes selecting a first transmission mode based on a predetermined channel database and a first channel characterization. The first channel characterization can be based upon signals transmitted in an initial mode. An error factor is generated based on a difference between an estimated performance characteristic, and an expected performance characteristic. A subsequent transmission mode is selected based upon the predetermined channel database, the error factor and a subsequent channel characterization. The predetermined channel database can include a predetermined look-up-table that provides transmission mode selections based upon the channel characterizations. The look-up-table generally includes a plurality of quality parameter thresholds that determine the selection of a transmission mode. Another method includes receiving transmission signals that include data encoded in an initial transmission mode. A first quality parameter of the received transmission signals is measured. A subsequent transmission mode is selected based upon the quality parameter. Transmission signals are received having data encoded in the subsequent transmission mode. A second quality parameter is measured. A parameter is adjusted within selection criteria of another subsequent transmission mode based upon the second quality parameter.
Abstract:
In a multicellular cooperative radio communications method, the terminals estimate and communicate to all the access points of a cooperating cluster of access points information on the transmission channels between them and each access point of the cluster. The access points include homologous processor for scheduling the servicing of the terminals and operating in accordance with a particular criterion common to all the access points. Finally, the servicing of the terminals is effected jointly by said access points, in an order determined by the processor, using transmission parameters on the basis of the information on the transmission channels transmitted by the terminals.
Abstract:
The present invention includes a method of optimizing a transmission mode of wirelessly transmitted data. The method includes selecting a first transmission mode based on a predetermined channel database and a first channel characterization. The first channel characterization can be based upon signals transmitted in an initial mode. An error factor is generated based on a difference between an estimated performance characteristic, and an expected performance characteristic. A subsequent transmission mode is selected based upon the predetermined channel database, the error factor and a subsequent channel characterization. The predetermined channel database can include a predetermined look-up-table that provides transmission mode selections based upon the channel characterizations. The look-up-table generally includes a plurality of quality parameter thresholds that determine the selection of a transmission mode. Another method includes receiving transmission signals that include data encoded in an initial transmission mode. A first quality parameter of the received transmission signals is measured. A subsequent transmission mode is selected based upon the quality parameter. Transmission signals are received having data encoded in the subsequent transmission mode. A second quality parameter is measured. A parameter is adjusted within selection criteria of another subsequent transmission mode based upon the second quality parameter.
Abstract:
A method and communication system for selecting a mode for encoding data for transmission in a wireless communication channel between a transmit unit and a receive unit. The data is initially transmitted in an initial mode and the selection of the subsequent mode is based on a selection of first-order and second-order statistical parameters of short-term and long-term quality parameters. Suitable short-term quality parameters include signal-to-interference and noise ratio (SINR), signal-to-noise ratio (SNR), power level and suitable long-term quality parameters include error rates such as bit error rate (BER) and packet error rate (PER). The method of the invention can be employed in Multiple Input Multiple Output (MIMO), Multiple Input Single Output (MISO), Single Input Single Output (SISO) and Single Input Multiple Output (SIMO) communication systems to make subsequent mode selection faster and more efficient. Furthermore the method can be used in communication systems employing various transmission protocols including OFDMA, FDMA, CDMA, TDMA.
Abstract:
In a multicellular cooperative radio communications method, the terminals estimate and communicate to all the access points of a cooperating cluster of access points information on the transmission channels between them and each access point of the cluster. The access points include homologous processor for scheduling the servicing of the terminals and operating in accordance with a particular criterion common to all the access points. Finally, the servicing of the terminals is effected jointly by said access points, in an order determined by the processor, using transmission parameters on the basis of the information on the transmission channels transmitted by the terminals.
Abstract:
The present invention provides data transmission capacity that is optimized in a communication environment by iteratively modifying a beamforming vector by linearly coupling selfish beamforming with unselfish beamforming using feedback information. The transmitter for modifying the beamforming vector iteratively includes: a feedback receiving module that receives feedback information from a receiver: and a vector determination module that determines an initial beamforming vector by coupling a first vector for the selfish beamforming with a second vector for the unselfish beamforming at the time of initial beamforming, and corrects a coupling ratio of the first vector and the second vector of the beamforming vector with reference to the received feedback information whenever the beamforming is modified.
Abstract:
The present invention provides data transmission capacity that is optimized in a communication environment by iteratively modifying a beamforming vector by linearly coupling selfish beamforming with unselfish beamforming using feedback information. The transmitter for modifying the beamforming vector iteratively includes: a feedback receiving module that receives feedback information from a receiver: and a vector determination module that determines an initial beamforming vector by coupling a first vector for the selfish beamforming with a second vector for the unselfish beamforming at the time of initial beamforming, and corrects a coupling ratio of the first vector and the second vector of the beamforming vector with reference to the received feedback information whenever the beamforming is modified.
Abstract:
The present invention includes a method of optimizing a transmission mode of wirelessly transmitted data. The method includes selecting a first transmission mode based on a predetermined channel database and a first channel characterization. The first channel characterization can be based upon signals transmitted in an initial mode. An error factor is generated based on a difference between an estimated performance characteristic, and an expected performance characteristic. A subsequent transmission mode is selected based upon the predetermined channel database, the error factor and a subsequent channel characterization. The predetermined channel database can include a predetermined look-up-table that provides transmission mode selections based upon the channel characterizations. The look-up-table generally includes a plurality of quality parameter thresholds that determine the selection of a transmission mode. Another method includes receiving transmission signals that include data encoded in an initial transmission mode. A first quality parameter of the received transmission signals is measured. A subsequent transmission mode is selected based upon the quality parameter. Transmission signals are received having data encoded in the subsequent transmission mode. A second quality parameter is measured. A parameter is adjusted within selection criteria of another subsequent transmission mode based upon the second quality parameter.
Abstract:
The present invention includes a method of optimizing a transmission mode of wirelessly transmitted data. The method includes selecting a first transmission mode based on a predetermined channel database and a first channel characterization. The first channel characterization can be based upon signals transmitted in an initial mode. An error factor is generated based on a difference between an estimated performance characteristic, and an expected performance characteristic. A subsequent transmission mode is selected based upon the predetermined channel database, the error factor and a subsequent channel characterization. The predetermined channel database can include a predetermined look-up-table that provides transmission mode selections based upon the channel characterizations. The look-up-table generally includes a plurality of quality parameter thresholds that determine the selection of a transmission mode. Another method includes receiving transmission signals that include data encoded in an initial transmission mode. A first quality parameter of the received transmission signals is measured. A subsequent transmission mode is selected based upon the quality parameter. Transmission signals are received having data encoded in the subsequent transmission mode. A second quality parameter is measured. A parameter is adjusted within selection criteria of another subsequent transmission mode based upon the second quality parameter.