摘要:
A communications system (20) includes a resource controller (22) and a terminal (24) in communication with the resource controller (22). Periodically, the resource controller (22) sends a service announcement (46) that identifies a set (50) of timeslots (52) within a communication resource (40) configured for random access within a future frame (42). The terminal (24) ascertains a burst characteristic (118) of a message (54) to be sent from the terminal (24) and generates a random access parameter (128). The terminal (24) selects one of the timeslots (52) from the set (50) in accordance with the random access parameter (128), the timeslot exhibiting a burst type (62) corresponding to the burst characteristic (118) of the message (54). The terminal (24) transmits the message (54) in the selected timeslot (52).
摘要:
An electric power meter (102) includes a temperature sensor (114) and a controller (112). The controller (112) is operable, based on the temperature reported from the temperature sensor (114), to generate alarm(s) when the temperature exceeds certain alarm threshold(s) (307, 507, 508) and to activate a power disconnect switch (104), thereby shutting off power to a customer premises, when the temperature exceeds a shut off threshold (309, 509). The controller (112) is operable to activate the power disconnect switch (104) for non-payment of electricity cost, subject to secondary criteria based on regulatory requirements. A customer terminal (103) may be used to notify a customer of an alarm condition, to provide information regarding electrical power usage or to provide information regarding disconnection of electrical power.
摘要:
A pre-payment energy metering system uses two-way smart card communications. Secure power line carrier communications are provided at the consumer locations communication between a customer terminal and the utility meter. Two-way secure communication of data is provided through the use of a smart card or memory card which conveys data from the utility service provider to the customer's terminal and also conveys information from the customer's terminal back to the utility. The pre-payment power system of the present invention allows consumers to pay for electricity prior to consumption through the use of the smart card which is loaded with funds at a fully automatic point-of-sale (POS) terminal or at the utility service providers staffed customer service center. Back office software interfaces between the POS terminals and customer service centers, and utility service providers customer information systems.
摘要:
A satellite based broadcast data communications service for a satellite communications system is presented which allows a data information service provider (40) to send large blocks of data information to mobile subscriber units (50). A satellite gateway (30) is coupled to a service provider (40) via a ground link (42) and to a satellite communications network (10) via a gateway link (36). A mobile subscriber unit (50) is coupled to the satellite communications network (10) via both a message link (56) and a high-speed high-bandwidth downlink (58). The mobile subscriber unit sends a data request for requested data information to service provider (40) via message link (56), satellite communications network (10), gateway link (36), gateway (30), and ground link (42). Service provider (40) responds by retrieving and sending the requested data information to the requesting subscriber unit (50) via ground link (42), gateway (30), gateway link (36), satellite communications network (10), and high-speed high-bandwidth downlink (58). Service provider (40) sends a set of standard data information to the satellite communications network (10) to be broadcast over the high-speed high-bandwidth downlinks (58). Each subscriber unit 50 receives the broadcast standard data information, preferably only those portions for which the subscriber unit (50) has access authorization. The satellite based broadcast data communications service provides for data requests, data delivery, data access control, delivery priority, and billing for use of the system.
摘要:
A data message routing and delivery system for an air traffic control system includes a communications network with one or more ground processing nodes, one or more satellite processing nodes, and one or more avionics processing nodes each configured to send and receive data packets to and from others network processing nodes in the communications network. One or more transmission prioritizing controllers are provided to determine the locations of each of network processing node, and to control access to communication channels and routing of data messages in order of priority between the network processing nodes. An application executing on one network processing node is send to an application executing on another network processing node under the control of the transmission prioritizing controllers. The transmission prioritizing controllers determine the priority ranking of each data packet and cause each data packet to be routed over a communication channel according to its priority ranking from one network node to another until it reaches its destination.
摘要:
A battery powered electronic system (50, FIG. 1) is controlled by a movement sensor (20) which senses the acceleration of the electronic system (50). The output of the movement sensor (20) is filtered by an event duration filter (FIG. 2, 120, 121) which determines if the output is of sufficient duration and acceleration to trigger a change in the operation of the electronic system (50). If the acceleration meets the triggering criteria, the electronic system (50) can be made to change an on/off state, an operating mode, or to effect an incremental change in the electronic system (50) such as adjusting the volume or channel setting. Additional movement sensors (20) oriented in different axes can be used to trigger a change in the operation of the electronic system (50) according to a plurality of different directions of acceleration.
摘要:
A GPS based search and rescue system utilizes an airborne interrogation unit for extending the range of a second interrogation unit. The airborne unit relays communication between a survival radio and the second interrogation unit. The second interrogation unit is typically a ground based unit and is arranged to provide GPS correction information to the survival radio. The normal line of sight communication between a survival radio and an interrogation unit is extended to an over the horizon communication path by utilizing the airborne interrogation unit as a relay for communications.
摘要:
A battery compartment (12) adapted to accommodate any of several different types of batteries (30, 32, 34). The compartment (12) includes a hollow region having a length equivalent to that of one or more batteries (31, 33, 35) and includes a positive contact (65) disposed at one end thereof. The compartment also includes a cap (14) adapted to couple to an end of the compartment (12) remote from the one end. The one end includes a first contact (65) and one or more additional positive contacts (63). The additional positive contacts (63) are coupled to anodes of diodes (64) having cathodes coupled to the positive contact (65).
摘要:
Survival radio interrogator (1) transmits upon request a message including an identification of survival radio (3). Upon receiving and processing this message, survival radio (3) determines its position from the Global Positioning System and transmits a message back to the search aircraft (2) with the survival radio interrogator (1). The processor (10) of the survival radio interrogator 1 determines a range and bearing of the survival radio (3) and processes data from the survival radio 3 which data includes identification, position and messaging information for display on the LCD display 14. All message transmissions are conducted via the aircraft's (2) radio/intercom system (30).
摘要:
A base station (26) provides service in a satellite communications (SATCOM) system (22) to a terminal (24). The SATCOM system (22) operates in accordance with a first standard (43), and the terminal (24) is unable to communicate in accordance with the first standard (43). Methodology entails receiving, at a SATCOM resource controller (32), a request (62) for a satellite resource (46) from the base station (26). The satellite resource (46) is allocated to the base station (26) and the controller (32) sends a message (58) with the allocated satellite resource (46). The base station (26) applies a second standard (48), defining a specific set of functional and performance characteristics, to the satellite resource (46). The terminal (24) is enabled to perform satellite communications in accordance with the second standard (48) using the satellite resource (46).