摘要:
An apparatus and method for inverting a color display on a dark background to produce a display on a substantially white background suitable for printing, includes the element of maintaining the same apparent relative intensities in both the LCD display on a dark background and the hardcopy displayed on a light background. The apparatus includes a memory including a first palette for the LCD display, a second palette for the hardcopy display, and a look-up table. A controller accesses the first and second palettes and look-up table for converting display data from LCD data to color-inverted printer data.
摘要:
An anesthesia machine output monitor (AMOM) which performs the functions of measuring the flow and composition of anesthesia gases delivered by the anesthesia machine, measuring on-line the amount of inhaled anesthetic used during a procedure requiring an anesthetic agent, measuring on-line the cost of inhaled anesthetic used during a procedure requiring an anesthetic agent, and integrating with an automated anesthesia recorder (AAR) to allow the recording of anesthetic gas flow rates and composition during a procedure and the cumulative cost of the anesthetic gases used during the procedure. The anesthesia gas flow rates and composition are measured using a modified infrared anesthetic gas analyzer that measures anesthetic gas composition and a pitot tube that is inserted in the common gas outlet of the anesthesia machine in order to measure the composition and flow rates of gases as they exit the anesthesia machine. Anesthetic gas sampling is accomplished by aspirating anesthetic gases from a sampling port integrated into the pitot tube. The measured gas analog signals are then captured from an I/O port of the capnograph and provided to a processor for on-line processing. An automated anesthesia recorder is preferably provided to permit cost and compliance records to be maintained for each use of the anesthesia machine.
摘要:
A system for displaying waveforms representing an input signal includes a display subsystem, coupled to a source of the input signal, for displaying a waveform representing the input signal in response to a display control signal. A trigger circuit is coupled to the input signal source and detects a trigger event. A time displacement circuit is coupled to the trigger circuit and generates a time displaced trigger signal a controllable amount of time after detection of the trigger event. A switch is coupled between the trigger circuit, the time displacement circuit, and the display subsystem. The switch selectively generates a display control signal in response to either the detected trigger event or a time displaced trigger signal.
摘要:
A method for rasterization of a set of voltage-versus-time data-address pairs into horizontal and vertical locations of a multi-bit raster display memory of a digital oscilloscope or similar electronic data acquisition instrument is disclosed. It provides a new way of controlling digital intensity, by allowing the operator and/or a function based on the instrument's trigger rate to set the number of intensity units available for brightening the pixels affected by the rasterization of each acquisition data pair. If a vector has more pixels than there are units of intensity available, the number of pixels that are to be brightened is limited but spread out over the vector's length by an algorithm that includes at least some degree of randomization. If there are more units of intensity available than there are pixels to put them in, the extra ones can either be distributed into each pixel or randomly added along the vector or ignored. If the vector has no length, all of the available intensity, or some lesser amount of intensity, is put on one pixel. Setting a small minimum vector length, below which only limited vector fill is used, can save time by limiting the amount spent on insignificant details. Setting maximum and minimum intensity levels for those pixels that are affected by the rasterization process can limit saturation and assure that areas that receive only one or a few attacks will still have an intensity level that is perceptible. Sparse vector rasterization avoids the hard binary choice between using a dot mode or a vector mode, and gives the user an analog-like intensity control that produces a perceived continuum of viewing choices. It does this while maximizing the number of pixels updated within the context of how many waveforms are being acquired and need to be processed.