Abstract:
An apparatus comprises an end effector, a shaft assembly, and a drive assembly. The end effector comprises needle receiving arms operable to grasp a needle. The drive assembly comprises drive members that are rotatable about respective drive axes that are perpendicular to the axis of the shaft assembly. The drive assembly is operable to drive the needle receiving arms to selectively engage and disengage the needle; and to selectively pass the needle from one needle receiving arm to the other needle receiving arm. The drive assembly provides an interface to a controller that is operable via a remote user interface. The drive assembly may include helical gears, clutch assemblies, a rack and pinion, or other components to convert motion of the drive members into motion at the end effector.
Abstract:
Various methods and devices are provided for allowing multiple surgical instruments to be inserted into sealing elements of a single surgical access device. The sealing elements can be movable along predefined pathways within the device to allow surgical instruments inserted through the sealing elements to be moved laterally, rotationally, angularly, and vertically relative to a central longitudinal axis of the device for ease of manipulation within a patient's body while maintaining insufflation.
Abstract:
A suture needle driving instrument comprises a shaft assembly, an end effector, and a grasping actuation assembly. The end effector is located at the distal end of the shaft assembly and includes a pair of grasping arms. Each grasping arm comprises a respective pair of jaws. Each pair of jaws is operable to cooperate to grasp and release a suture needle. The grasping actuation assembly is operable to drive one jaw of each pair in one direction while simultaneously driving the other jaw of the pair in an opposite direction, to selectively grasp or release the suture needle. The shaft assembly includes two pairs of parallel concentric shafts, which form part of the actuation assembly. Each shaft pair is operable to drive a respective internal drive shaft having separate threaded regions with opposing pitch. The instrument may be used through a trocar during minimally invasive surgery.
Abstract:
A suture anchor comprises an elongate body having a first end, a second end, and a longitudinal axis extending between the first and second ends. The first end may have a flared geometry. A lateral suture relief is in the elongate body extending from the first end to an longitudinal position intermediate the first and second ends. A hollow tubular portion in the elongate body is longitudinally spaced from the lateral suture relief. A suture is positioned in the hollow tubular portion. The suture has a delivery position parallel the longitudinal axis and a deployed position transverse to the longitudinal axis.
Abstract:
A method for determining an electrical characteristic (such as a resistance) of an antifuse of a programmable device. The method comprises the steps of: 1) before the antifuse is programmed, determining an electrical characteristic (such as a voltage, current and/or resistance) of a first conductive path which includes a series element disposed electrically in series with a parallel element, the parallel element being controlled to be substantially conductive, the parallel element being disposed electrically in parallel with the unprogrammed antifuse; 2) after programming of the antifuse, determining an electrical characteristic (such as a voltage, current and/or resistance) of a second conductive path including the series element disposed electrically in series with the programmed antifuse when the parallel element is controlled to be substantially nonconductive; 3) determining an electrical characteristic (such as a voltage, current and/or resistance) of a third, conductive path through the series element, and through the programmed antifuse and the parallel element, the parallel element being controlled to be substantially conductive; and 4) determining the electrical characteristic (such as a resistance) of the antifuse based on the above three determinations in 1), 2) and 3). The method is usable to determine whether or not programmed antifuses of a programmable device have low enough resistances to meet desired reliability criteria.
Abstract:
A suture needle driving instrument comprises a shaft assembly, an end effector, and a grasping actuation assembly. The end effector is located at the distal end of the shaft assembly and includes a pair of grasping arms. Each grasping arm comprises a respective pair of jaws. Each pair of jaws is operable to cooperate to grasp and release a suture needle. The grasping actuation assembly is operable to drive one jaw of each pair in one direction while simultaneously driving the other jaw of the pair in an opposite direction, to selectively grasp or release the suture needle. The shaft assembly includes two pairs of parallel concentric shafts, which form part of the actuation assembly. Each shaft pair is operable to drive a respective internal drive shaft having separate threaded regions with opposing pitch. The instrument may be used through a trocar during minimally invasive surgery.
Abstract:
A surgical needle includes a pair of ends, a mid-region extending between the ends, and at least one grasping feature configured for grasping by a suturing instrument. An end of a suture is secured to the mid-region of the needle in a manner such that the end of the suture defines an oblique angle with at least part of the centerline defined by the mid-region of the needle. The end of the suture may be disposed in a hollow portion of the needle. The grasping feature may include a notch such as a scallop. The suture may be pivotally coupled with the needle via a ball or pin. The needle may have one or more sharp points. The sharp point may include three converging cutting edges, at least two planar surfaces bounded by the three cutting edges, and a rounded surface bounded by two of the three cutting edges.
Abstract:
A needle holder includes a shaft and a needle driver located at the distal end of the shaft. The needle driver is operable to rotate a needle such that the needle forms a non-perpendicular angle with a longitudinal axis of the shaft. In some versions, the needle driver includes a first arm and a rotatable assembly that is configured to longitudinally clamp about a portion of a needle. The rotatable assembly may include self-righting features to right the needle perpendicular to the first arm. The needle driver may further include a second arm that is pivotable relative to the first arm. The rotatable assembly may include a top member associated with the second arm and a bottom member associated with the first arm. In some versions, spring-loaded collets may secure the needle to a rotatable assembly. Alternatively, a pair of actuating arms may pivot the needle about a curved surface.
Abstract:
A suture needle driving instrument comprises a shaft and an end effector. The end effector is located at the distal end of the shaft and includes a pair of needle grasping arms. Each grasping arm extends along a respective arm axis. The grasping arms are operable to drive a suture needle along a rotational path about an axis, such as one of the arm axes, that is offset from the central longitudinal axis of the shaft. The rotational path may be perpendicular to the axis of the shaft. A needle driven by the end effector may have an arc radius that is greater than the radius of the shaft. At least one of the needle grasping arms may include a dogleg feature positioning a distal portion of the grasping arm outside the radius of the shaft. The instrument may be used through a trocar during minimally invasive surgery.
Abstract:
A suture needle driving instrument comprises a shaft, an end effector, and a handle assembly. The end effector is located at the distal end of the shaft and includes a pair of grasping arms having a respective pair of jaws driven by a respective drive shaft. Each pair of jaws is operable to cooperate to grasp and release a suture needle. The handle assembly includes a control assembly that is operable to rotate the drive shafts to transfer the suture needle between the grasping arms. In some versions, the control assembly may include an actuatable rack. The rack may include one or more control features that selectively rotate the drive shafts as the rack is actuated. The rack may further include cam surfaces to selectively restrict the motion of the drive shafts as the rack is actuated. In some versions the rack may actuate vertically.