Abstract:
A power-conserving time division multiple access (TDMA) radio telephone system is disclosed in which a cluster of subscriber stations, remote from a base station, employs a common pool of frequency-agile modems each of which digitally synthesizes, on a timeSlot-by-timeSlot basis, the different channel-identifying intermediate frequencies needed to support communications between several of the subscriber stations and the base station. Power conservation is facilitated inter alia by controlling the assignment of modems to calls, maintaining unassigned modems in a powered-down state and by controlling the number of calls using the same time slot. Delay in assigning a powered-down modem to a call is eliminated by making available to all modems the highest quality synchronization information obtained by any of the active modems.
Abstract:
A power-conserving time division multiple access (TDMA) radio telephone system is disclosed in which a cluster of subscriber stations, remote from a base station, employs a common pool of frequency-agile modems each of which digitally synthesizes, on a timeSlot-by-timeSlot basis, the different channel-identifying intermediate frequencies needed to support communications between several of the subscriber stations and the base station. Power conservation is facilitated inter alia by controlling the assignment of modems to calls, maintaining unassigned modems in a powered-down state and by controlling the number of calls using the same time slot. Delay in assigning a powered-down modem to a call is eliminated by making available to all modems the highest quality synchronization information obtained by any of the active modems.
Abstract:
A subscriber cluster unit for a wireless telecommunication system provides a wireless interface with a base station for a plurality of subscriber units. The cluster unit has a plurality of frequency agile modems for processing wireless communications with the base station and a plurality of subscriber line circuits, each for providing a telecommunication connection with a subscriber unit. A control processor assigns a modem for each communication between the base station and a selected subscriber unit which is coupled to one of the line circuits and associates that line circuit with the assigned modem for that communication. Thus, a subscriber unit coupled with any of the line circuits can communicate with the base station via any of the modems.
Abstract:
A subscriber unit of a time division multiple access (TDMA) radiotelephone system is, from a power consumption standpoint, reconfigured in each time slot of a TDMA frame to a power consumption tessellation in which subscriber unit circuit components not needed for communication signal processing in that time slot are powered down, and other components are powered up. Some circuit components are powered down by switching their power supply circuits. In order to minimize the extent of circuitry that must be provided to distribute power consumption control signals, other techniques (which utilize circuitry provided for other purposes), such as clock frequency control or power down commands, also are utilized to modify controlled circuit component power consumption without actually controlling power supply circuits. Loop connection length between the subscriber unit and the subscriber's telephone set, or other terminal equipment, is limited to a length which is much less than the length of a radio link on which the subscriber unit operates. Programmable ring frequency logic controls the frequency of a ringing signal generator, and a high frequency ring control signals switched on and off in the cadence of ringing operation. Also an expansion header is provided to enable serving plural subscriber loop circuits with the same radio equipment for reducing per line power consumption.
Abstract:
A power-conserving time division multiple access (TDMA) radio telephone system is disclosed in which a cluster of subscriber stations, remote from a base station, employs a common pool of frequency-agile modems each of which digitally synthesizes, on a timeSlot-by-timeSlot basis, the different channel-identifying intermediate frequencies needed to support communications between several of the subscriber stations and the base station. Power conservation is facilitated inter alia by controlling the assignment of modems to calls, maintaining unassigned modems in a powered-down state and by controlling the number of calls using the same time slot. Delay in assigning a powered-down modem to a call is eliminated by making available to all modems the highest quality synchronization information obtained by any of the active modems.
Abstract:
An apparatus and methods for a wireless telecommunication system to provide a wireless interface. A plurality of modems is used for processing wireless communications with a plurality of subscriber line circuits, each for providing a telecommunication connection. A control processor assigns a modem for each communication, selects one of the line circuits and associates that line circuit with the assigned modem for that communication. Thus, any of the line circuits can be used to communicate via any of the modems.
Abstract:
A power-conserving time division multiple access (TDMA) radio telephone system is disclosed in which a cluster of subscriber stations, remote from a base station, employs a common pool of frequency-agile modems each of-which digitally synthesizes, on a timeSlot-by-timeSlot basis, the different channel-identifying intermediate frequencies needed to support communications between several of the subscriber stations and the base station. Power conservation is facilitated inter alia by controlling the assignment of modems to calls, maintaining unassigned modems in a powered-down state and by controlling the number of calls using the same time slot. Delay in assigning a powered-down modem to a call is eliminated by making available to all modems the highest quality synchronization information obtained by any of the active modems.
Abstract:
A power-conserving time division multiple access (TDMA) radio telephone system is disclosed in which a cluster of subscriber stations, remote from a base station, employs a common pool of frequency-agile modems each of which digitally synthesizes, on a timeSlot-by-timeSlot basis, the different channel-identifying intermediate frequencies needed to support communications between several of the subscriber stations and the base station. Power conservation is facilitated inter alia by controlling the assignment of modems to calls, maintaining unassigned modems in a powered-down state and by controlling the number of calls using the same time slot. Delay in assigning a powered-down modem to a call is eliminated by making available to all modems the highest quality synchronization information obtained by any of the active modems.