摘要:
According to one embodiment, a device for synchronizing data output from two or more memory arrays that includes a plurality of sense circuits configured to be responsive to a clock signal. The device further includes a plurality of latches and a tracking circuit. The tracking circuit may be configured to produce a control signal responsive to the clock signal. The control signal may be operable to enable the plurality of latches. The tracking has an associated delay that is substantially the same as a delay associated with at least one of the plurality of sense circuits.
摘要:
The present disclosure enables individual bits of a data signal to be flipped (their state changed from logic one to logic zero or vice versa) to mimic an error. By flipping various bits or combinations of bits, various predetermined errors can be forced. By measuring the time delay between when uncorrected data is output from the memory device and when corrected data is output, the time the error correction circuitry takes to correct each of the forced errors can be measured and the part characterized according to the various measurements. Because of the rules governing abstracts, this abstract should not be used to construe the claims.
摘要:
A sense amplifier for use in a memory device and in a memory-resident system. The sense amplifier operates on a lower voltage consistent with the voltage range of the differential input data and the sense amplifier further operates on a higher voltage to level-shift the output signal concurrently with the sensing operation. The sense amplifier includes a pair of differential cross-coupled inverters whose inputs are coupled to receive the data from the memory. Once the input nodes of the cross-coupled inverters are charged, the cross-coupled inverters are further coupled to pull-up and pull-down circuits that span the higher voltage range for performing the level-shifting functionality. In order to recondition the sense amplifier for a subsequent sensing process, a clamp circuit shorts the level-shifted outputs together to prevent a higher voltage level from being inadvertently passed to the memory device when isolating pass gates are reactivated.
摘要:
A write driver circuit includes a drive circuit having a first drive node adapted to receive a first voltage, a second drive node, an input adapted to receive a data signal, and an output. The drive circuit couples the output to the first voltage node when the data signal has a first logic voltage, and couples the output to the second drive node when the data signal has a second logic voltage. A test circuit has an input adapted to receive a test mode signal, and an output coupled to the second drive node. The test circuit develops a first impedance between the second drive node and a second voltage source when the test mode signal is active, and develops a second impedance between the second drive node and the second voltage source when the, test mode signal is inactive.
摘要:
According to one embodiment, a combination is comprised of a plurality of sense amps, each having an input for receiving a clock signal. A data bus is for receiving data from the plurality of sense amps in response to a clock signal being input to the plurality of sense amps. A tracking circuit is responsive to the clock signal for producing a control signal. A plurality of latches is responsive to the control signal for latching data from the bus. The control signal has a delay that is equal to the time needed for a last data bit to arrive at the plurality of latches. That delay may be equal to a delay associated with inputting the clock signal to a last one of the plurality of sense amps, plus a delay of the last sense amp, plus a delay of the data bus. That amount of delay may be achieved in a number of ways which combines electrical delay with delay inherently associated with the tracking circuit's location. For example, the delay of the control signal may be achieved by locating the tracking circuit proximate to the last one of the plurality of sense amps and providing the tracking circuit with an electrical delay equal to the delay of the last one of the plurality of sense amps. Because of the rules governing abstracts, this abstract should not be used to construe the claims.
摘要:
According to one embodiment, a combination is comprised of a plurality of sense amps, each having an input for receiving a clock signal. A data bus is for receiving data from the plurality of sense amps in response to a clock signal being input to the plurality of sense amps. A tracking circuit is responsive to the clock signal for producing a control signal. A plurality of latches is responsive to the control signal for latching data from the bus. The control signal has a delay that is equal to the time needed for a last data bit to arrive at the plurality of latches. That delay may be equal to a delay associated with inputting the clock signal to a last one of the plurality of sense amps, plus a delay of the last sense amp, plus a delay of the data bus. That amount of delay may be achieved in a number of ways which combines electrical delay with delay inherently associated with the tracking circuit's location. For example, the delay of the control signal may be achieved by locating the tracking circuit proximate to the last one of the plurality of sense amps and providing the tracking circuit with an electrical delay equal to the delay of the last one of the plurality of sense amps. Because of the rules governing abstracts, this abstract should not be used to construe the claims.
摘要:
According to one embodiment, a combination is comprised of a plurality of sense amps, each having an input for receiving a clock signal. A data bus is for receiving data from the plurality of sense amps in response to a clock signal being input to the plurality of sense amps. A tracking circuit is responsive to the clock signal for producing a control signal. A plurality of latches is responsive to the control signal for latching data from the bus. The control signal has a delay that is equal to the time needed for a last data bit to arrive at the plurality of latches. That delay may be equal to a delay associated with inputting the clock signal to a last one of the plurality of sense amps, plus a delay of the last sense amp, plus a delay of the data bus. That amount of delay may be achieved in a number of ways which combines electrical delay with delay inherently associated with the tracking circuit's location. For example, the delay of the control signal may be achieved by locating the tracking circuit proximate to the last one of the plurality of sense amps and providing the tracking circuit with an electrical delay equal to the delay of the last one of the plurality of sense amps. Because of the rules governing abstracts, this abstract should not be used to construe the claims.
摘要:
A sense amplifier for use in a memory device and in a memory-resident system. The sense amplifier operates on a lower voltage consistent with the voltage range of the differential input data and the sense amplifier further operates on a higher voltage to level-shift the output signal concurrently with the sensing operation. The sense amplifier includes a pair of differential cross-coupled inverters whose inputs are coupled to receive the data from the memory. Once the input nodes of the cross-coupled inverters are charged, the cross-coupled inverters are further coupled to pull-up and pull-down circuits that span the higher voltage range for performing the level-shifting functionality. In order to recondition the sense amplifier for a subsequent sensing process, a clamp circuit shorts the level-shifted outputs together to prevent a higher voltage level from being inadvertently passed to the memory device when isolating pass gates are reactivated.
摘要:
A write driver circuit includes a drive circuit having a first drive node adapted to receive a first voltage, a second drive node, an input adapted to receive a data signal, and an output. The drive circuit couples the output to the first voltage node when the data signal has a first logic voltage, and couples the output to the second drive node when the data signal has a second logic voltage. A test circuit has an input adapted to receive a test mode signal, and an output coupled to the second drive node. The test circuit develops a first impedance between the second drive node and a second voltage source when the test mode signal is active, and develops a second impedance between the second drive node and the second voltage source when the test mode signal is inactive.
摘要:
An integrated circuit is described which includes a test mode circuit that allows a substrate of the integrated circuit to be forced to a voltage level dictated by an external connection during a test operation, and provides an improved substrate isolation from the external connection during non-test operations. Both n-channel transistor and p-channel transistor isolation circuit embodiments are described. An integrated circuit memory device is described which incorporated the test mode and isolation circuits. The external connection can be coupled to a negative voltage during non-test operation which is more negative than a threshold voltage below a substrate voltage without inadvertently coupling the external connection and substrate together.