摘要:
An apparatus comprises a first PFET including a first intrinsic body diode; an electrostatic discharge (ESD) subcircuit coupled to a source of the first PFET; a reverse bias voltage element, such as a zener diode, an anode of which is coupled to a gate of the first PFET; a second PFET having a source coupled to a cathode of the zener diode a capacitor coupled to a gate the second PFET; and a first resistor coupled to the gate of the second PFET. The apparatus can protect against both positive and negative electro static transient discharge events.
摘要:
An apparatus comprises a first PFET including a first intrinsic body diode; an electrostatic discharge (ESD) subcircuit coupled to a source of the first PFET; a reverse bias voltage element, such as a zener diode, an anode of which is coupled to a gate of the first PFET; a second PFET having a source coupled to a cathode of the zener diode a capacitor coupled to a gate the second PFET; and a first resistor coupled to the gate of the second PFET. The apparatus can protect against both positive and negative electro static transient discharge events.
摘要:
Various apparatuses, methods and systems for protecting a driver from electrostatic discharge are disclosed herein. For example, some exemplary embodiments provide a driver, including a buffer, a leakage path blocking transistor connected to an output of the buffer, and an output driver connected to an output of the leakage path blocking transistor. Current from the output driver to the buffer is substantially blocked by the leakage path blocking transistor.
摘要:
Electrostatic discharge (ESD) protection circuits for self-protecting cascode stages are disclosed. In one example, an ESD protection circuit is described. A cascode stage is configured to selectively couple an output pad to a reference terminal. An ESD sensor may detect a change in voltage indicative of an ESD event occurring at the output pad, causing a gate drive to turn on the cascode stage to conduct ESD current in response to detection of the ESD event at the output pad. A leakage blocker is also included to prevent leakage current from the cascode stage to the gate drive while there is not an ESD event.
摘要:
Various apparatuses, methods and systems for protecting a driver from electrostatic discharge are disclosed herein. For example, some exemplary embodiments provide a driver, including a buffer, a leakage path blocking transistor connected to an output of the buffer, and an output driver connected to an output of the leakage path blocking transistor. Current from the output driver to the buffer is substantially blocked by the leakage path blocking transistor.
摘要:
The present invention provides a semiconductor device, a method of manufacture therefore and an integrated circuit including the same. The semiconductor device (300), without limitation, may include a gate electrode (320) having a gate length (l) and a gate width (w) located over a substrate (310) and a gate electrode material feature (330) located adjacent a gate width (w) side of the gate electrode (320). The semiconductor device (300) may further include a silicide region (350) located over the substrate (310) proximate a side of the gate electrode (320), the gate electrode material feature (330) breaking the silicided region (350) into multiple silicide portions (353, 355, 358).
摘要:
In a method and system for protecting a semiconductor device from an electrostatic discharge (ESD) event, an ESD tester generates an ESD event by providing an ESD test signal having a leading pulse and a trailing pulse. An ESD input of the device under test (DUT) receives the ESD test signal. An ESD protection circuit embedded in the DUT detects the ESD signal and asserts a trigger in response to the detection. The ESD protection circuit provides a leading discharge path to the leading pulse in response to detecting the ESD signal, thereby protecting the DUT during the leading pulse. In addition, the ESD protection circuit also provides a trailing discharge path to the trailing pulse in response to the trigger, thereby protecting the DUT during the trailing pulse.
摘要:
Electrostatic discharge (ESD) protection circuits for self-protecting cascode stages are disclosed. In one example, an ESD protection circuit is described. A cascode stage is configured to selectively couple an output pad to a reference terminal. An ESD sensor may detect a change in voltage indicative of an ESD event occurring at the output pad, causing a gate drive to turn on the cascode stage to conduct ESD current in response to detection of the ESD event at the output pad. A leakage blocker is also included to prevent leakage current from the cascode stage to the gate drive while there is not an ESD event.
摘要:
The present invention provides a semiconductor device, a method of manufacture therefore and an integrated circuit including the same. The semiconductor device (300), without limitation, may include a gate electrode (320) having a gate length (l) and a gate width (w) located over a substrate (310) and a gate electrode material feature (330) located adjacent a gate width (w) side of the gate electrode (320). The semiconductor device (300) may further include a silicide region (350) located over the substrate (310) proximate a side of the gate electrode (320), the gate electrode material feature (330) breaking the silicided region (350) into multiple silicide portions (353, 355, 358).
摘要:
In a method and system for protecting a semiconductor device from an electrostatic discharge (ESD) event, an ESD tester generates an ESD event by providing an ESD test signal having a leading pulse and a trailing pulse. An ESD input of the device under test (DUT) receives the ESD test signal. An ESD protection circuit embedded in the DUT detects the ESD signal and asserts a trigger in response to the detection. The ESD protection circuit provides a leading discharge path to the leading pulse in response to detecting the ESD signal, thereby protecting the DUT during the leading pulse. In addition, the ESD protection circuit also provides a trailing discharge path to the trailing pulse in response to the trigger, thereby protecting the DUT during the trailing pulse.