Abstract:
Microfluidic shunt valves are disclosed having a deflectable element capable of being held in a closed position to occlude the passage of fluid between an inlet and outlet and, when not held in the closed position, the deflectable element is adapted to oscillate in response to fluid pressure pulses and thereby facilitate fluid passage through the valve. Controls for activating the deflectable element to permit fluid passage are also included.
Abstract:
Improvements in the sensor array are disclosed for an array used in a module for preventing unauthorized use of a firearm or other device. The module to which the invention is applicable of the type including a plurality of pressure sensors for sensing a user's handgrip on the device; comparator means for comparing a pressure signature profile compiled from an output from said pressure sensors with at least one pressure signature profile in storage; and means for preventing operation of the device when the compared profiles do not match. The improved sensor array comprises a first set of spaced electrically conductive lines formed on the gripping surface; a thin layer of (preferably) piezoresistive material overlying the first set of conductive lines; and a second set of spaced electrically conductive lines formed over the piezoresistive layer. The lines of the second set are orthogonal to the lines of the first set, to establish a grid-like pattern of conductive lines sandwiching the piezoresistive layer. The projected intersections between the lines of the first and second sets (i.e., the grid crossing points) thereby define with the intervening portion of the piezoresistive layer, an array of sensors which are responsive to pressure applied against the gripping surface by a user of the device. Such pressure changes the electrical conductivity in the path including the intersecting lines and intervening piezoresistive material. Signal outputs from the electrical paths including the array of sensors serve to define the pressure signal profile.
Abstract:
Microfluidic shunt valves are disclosed having a deflectable element capable of being held in a closed position to occlude the passage of fluid between an inlet and outlet and, when not held in the closed position, the deflectable element is adapted to oscillate in response to fluid pressure pulses and thereby facilitate fluid passage through the valve. Controls for activating the deflectable element to permit fluid passage are also included.
Abstract:
A composite membrane is disclosed fabricated by depositing an inorganic ion-conducting thin film on a cation-selective organic polymer membrane substrate using Pulse Laser Deposition (PLD) or reactive magnetron sputtering. The fabricated membrane combines the advantages of the polymeric membrane including flexibility and low electrical resistance, with the advantages of the inorganic membrane film including resistance to fouling, high selectivity for alkali metal ions over hydrogen ions and resistance to oxidizing chemicals; electromembrane systems and processes for example alkali metal sensing electrodes and other membrane-based electrochemical detectors, electrolytic and electrodialytic systems incorporate such membranes thus improving their performance in terms of current efficiency, salt to acid conversion ratio, reliable operation and membrane life.