Abstract:
A method of manufacturing and driving an optically compensated birefringence (OCB) mode liquid crystal (LC) panel is provided. In the method, the OCB LC panel is applied which is characterized that a closed structure region with HAN, VA or Bend property is around a display region of the OCB LC panel. Thereafter, the OCB LC panel is driven by a mode of multistage voltage variation. The mode of multistage voltage variation includes applying a high voltage to LC molecules in the OCB LC panel for transferring them to a bend or a VA state, decaying the high voltage to a low voltage above a bend state holding voltage of the OCB LC panel, and turning off the voltage to zero so as to maintain the configuration of LC molecules in the OCB LC panel in a π-twist state.
Abstract:
A method for fabricating a display substrate is provided. A substrate is provided first. After that, an alignment film coating and an alignment treatment are performed to the substrate, and a layer of photoreactive monomer material is coated on the surface of the substrate after the alignment treatment. Thereafter, the layer of photoreactive monomer material is selectively irradiated by UV light in an exposed region, and the layer of photoreactive monomer material in an unexposed region is removed for liquid crystal molecules to have different pretilt angles in the exposed region and the unexposed region.
Abstract:
A liquid crystal compound with high helical twisting power, a method for preparing the same, and a liquid crystal composition containing the same. The liquid crystal compounds include cyclic group chain structures similar to the liquid crystal to serve as the core structure, and multi-ring structures of natural alcohol with optical activity, such as alcoholates of terpenol, borneol, cinchonidine, quinine, or derivatives thereof. As a result, the liquid crystal composition containing the liquid crystal compounds can filter out light of specific wavelengths from incident light due to optical activity and high helical twisting power thereof.
Abstract:
A first substrate and a second substrate are provided. An alignment process is performed on a surface of the first substrate and a surface of the second substrate respectively. A liquid crystal mixture is prepared, where the liquid crystal mixture includes a liquid crystal molecule and a liquid crystal monomer having a functional group of diacrylates, and the liquid crystal monomer having the functional group of diacrylates occupies 0.01-2 wt % of the liquid crystal mixture. The first substrate and the second substrate are assembled, and the liquid crystal mixture is filled therebetween. A polymerization curing process is performed such that the liquid crystal monomer having the functional group of diacrylates is polymerized to respectively form a liquid crystal polymer film on the aligned surfaces of the first and second substrates. The method enhances anchoring energy and reduces problems of V-T shift, surface gliding, and residual image.
Abstract:
An OCB mode liquid crystal display panel having a plurality of pixel regions includes a first substrate, a second substrate, dot liquid crystal polymer patterns and an OCB liquid crystal material. The first substrate has a first alignment treated layer thereon, the second substrate has a second alignment treated layer thereon, and the dot liquid crystal polymer patterns are on the first alignment treated layer and the second alignment treated layer. Each of the dot liquid crystal polymer patterns has an area between 1˜225 μm2. The second substrate is opposite to the first substrate, and the OCB liquid crystal material is between the first substrate and the second substrate.
Abstract:
A liquid crystal compound with high helical twisting power, a method for preparing the same, and a liquid crystal composition containing the same. The liquid crystal compounds include cyclic group chain structures similar to the liquid crystal to serve as the core structure, and multi-ring structures of natural alcohol with optical activity, such as alcoholates of terpenol, borneol, cinchonidine, quinine, or derivatives thereof. As a result, the liquid crystal composition containing the liquid crystal compounds can filter out light of specific wavelengths from incident light due to optical activity and high helical twisting power thereof.
Abstract:
A first substrate and a second substrate are provided. An alignment process is performed on a surface of the first substrate and a surface of the second substrate respectively. A liquid crystal mixture is prepared, where the liquid crystal mixture includes a liquid crystal molecule and a liquid crystal monomer having a functional group of diacrylates, and the liquid crystal monomer having the functional group of diacrylates occupies 0.01-2 wt % of the liquid crystal mixture. The first substrate and the second substrate are assembled, and the liquid crystal mixture is filled therebetween. A polymerization curing process is performed such that the liquid crystal monomer having the functional group of diacrylates is polymerized to respectively form a liquid crystal polymer film on the aligned surfaces of the first and second substrates. The method enhances anchoring energy and reduces problems of V-T shift, surface gliding, and residual image.
Abstract:
A method for fabricating a display substrate is provided. A substrate is provided first. After that, an alignment film coating and an alignment treatment are performed to the substrate, and a layer of photoreactive monomer material is coated on the surface of the substrate after the alignment treatment. Thereafter, the layer of photoreactive monomer material is selectively irradiated by UV light in an exposed region, and the layer of photoreactive monomer material in an unexposed region is removed for liquid crystal molecules to have different pretilt angles in the exposed region and the unexposed region.
Abstract:
A first substrate and a second substrate are provided. An alignment process is performed on a surface of the first substrate and a surface of the second substrate respectively. A liquid crystal mixture is prepared, where the liquid crystal mixture includes a liquid crystal molecule and a liquid crystal monomer having a functional group of diacrylates, and the liquid crystal monomer having the functional group of diacrylates occupies 0.01-2 wt % of the liquid crystal mixture. The first substrate and the second substrate are assembled, and the liquid crystal mixture is filled therebetween. A polymerization curing process is performed such that the liquid crystal monomer having the functional group of diacrylates is polymerized to respectively form a liquid crystal polymer film on the aligned surfaces of the first and second substrates. The method enhances anchoring energy and reduces problems of V-T shift, surface gliding, and residual image.
Abstract:
A liquid crystal display (LCD) panel and a fabricating method thereof are described. First, a first substrate and a second substrate are provided. A liquid crystal monomer layer is then formed on the surface of at least one of the first and second substrates. Next, a curing step is performed to the liquid crystal monomer layer to induce a polymerization reaction, so as to form a liquid crystal polymer layer. Thereafter, the first and second substrates are assembled and a liquid crystal layer is filled between the first and second substrates.