Abstract:
An integrated circuit device and method for manufacturing the integrated circuit device are disclosed. The disclosed method comprises forming a wedge-shaped recess with an initial bottom surface in the substrate; transforming the wedge-shaped recess into an enlarged recess with a height greater than the height of the wedge-shaped recess; and epitaxially growing a strained material in the enlarged recess.
Abstract:
A device includes a plurality of intra-device insulation regions having a first height; and a plurality of semiconductor fins horizontally spaced apart from each other by the plurality of intra-device insulation regions. A portion of the plurality of semiconductor fins is disposed above the plurality of intra-device insulation regions. The device further includes a first inter-device insulation region and a second inter-device insulation region with the plurality of semiconductor fins disposed therebetween. The first and the second inter-device insulation regions have a second height greater than the first height.
Abstract:
A first substrate and a second substrate are provided. An alignment process is performed on a surface of the first substrate and a surface of the second substrate respectively. A liquid crystal mixture is prepared, where the liquid crystal mixture includes a liquid crystal molecule and a liquid crystal monomer having a functional group of diacrylates, and the liquid crystal monomer having the functional group of diacrylates occupies 0.01-2 wt % of the liquid crystal mixture. The first substrate and the second substrate are assembled, and the liquid crystal mixture is filled therebetween. A polymerization curing process is performed such that the liquid crystal monomer having the functional group of diacrylates is polymerized to respectively form a liquid crystal polymer film on the aligned surfaces of the first and second substrates. The method enhances anchoring energy and reduces problems of V-T shift, surface gliding, and residual image.
Abstract:
A device includes a plurality of intra-device insulation regions having a first height; and a plurality of semiconductor fins horizontally spaced apart from each other by the plurality of intra-device insulation regions. A portion of the plurality of semiconductor fins is disposed above the plurality of intra-device insulation regions. The device further includes a first inter-device insulation region and a second inter-device insulation region with the plurality of semiconductor fins disposed therebetween. The first and the second inter-device insulation regions have a second height greater than the first height.
Abstract:
A semiconductor device and a method for fabricating the semiconductor device are disclosed. An isolation structure is formed in a substrate and a gate stack is formed atop the isolation structure. A spacer is formed adjoining a sidewall of the gate stack and extends beyond an edge of the isolation structure. The disclosed method provides an improved method for protecting the isolation structure by using the spacer. The spacer can prevent the isolation structure from being damaged by chemicals, therefor, to enhance contact landing and upgrade the device performance.
Abstract:
A semiconductor device and a method for fabricating the semiconductor device are disclosed. An isolation structure is formed in a substrate and a gate stack is formed atop the isolation structure. A spacer is formed adjoining a sidewall of the gate stack and extends beyond an edge of the isolation structure. The disclosed method provides an improved method for protecting the isolation structure by using the spacer. The spacer can prevent the isolation structure from being damaged by chemicals, therefor, to enhance contact landing and upgrade the device performance.
Abstract:
An integrated circuit device and method for manufacturing the integrated circuit device are disclosed. The disclosed method comprises forming a wedge-shaped recess with an initial bottom surface in the substrate; transforming the wedge-shaped recess into an enlarged recess with a height greater than the height of the wedge-shaped recess; and epitaxially growing a strained material in the enlarged recess.
Abstract:
A first substrate and a second substrate are provided. An alignment process is performed on a surface of the first substrate and a surface of the second substrate respectively. A liquid crystal mixture is prepared, where the liquid crystal mixture includes a liquid crystal molecule and a liquid crystal monomer having a functional group of diacrylates, and the liquid crystal monomer having the functional group of diacrylates occupies 0.01-2 wt % of the liquid crystal mixture. The first substrate and the second substrate are assembled, and the liquid crystal mixture is filled therebetween. A polymerization curing process is performed such that the liquid crystal monomer having the functional group of diacrylates is polymerized to respectively form a liquid crystal polymer film on the aligned surfaces of the first and second substrates. The method enhances anchoring energy and reduces problems of V-T shift, surface gliding, and residual image.
Abstract:
A halogen- and phosphorus-free thermosetting resin composition is provided, which is mainly a varnish resin formed by mixing a mixture of two curing agents, an epoxy resin mixture, and an inorganic additive. The mixture of two curing agents is formed by mixing a phenolphthalein modified benzoxazine phenol aldehyde curing agent and an amino triazine novolak, and the epoxy resin mixture is formed by mixing an epoxy resin having an oxazolidone ring or a polyamide-imide-modified epoxy resin and a Bisphenol F epoxy resin.
Abstract:
A first substrate and a second substrate are provided. An alignment process is performed on a surface of the first substrate and a surface of the second substrate respectively. A liquid crystal mixture is prepared, where the liquid crystal mixture includes a liquid crystal molecule and a liquid crystal monomer having a functional group of diacrylates, and the liquid crystal monomer having the functional group of diacrylates occupies 0.01-2 wt % of the liquid crystal mixture. The first substrate and the second substrate are assembled, and the liquid crystal mixture is filled therebetween. A polymerization curing process is performed such that the liquid crystal monomer having the functional group of diacrylates is polymerized to respectively form a liquid crystal polymer film on the aligned surfaces of the first and second substrates. The method enhances anchoring energy and reduces problems of V-T shift, surface gliding, and residual image.