摘要:
A multi-layer laser diode mount is configured with a submount made from thermo- and electro-conductive material. One of the opposite surfaces of the submount supports a laser diode. The other surface of the submount faces and is spaced from a heatsink. The submount and heatsink are configured with respective thermal expansion coefficients (“TEC”) which are different from one another. The opposite surfaces of the submount are electroplated with respective metal layers one of which is bonded to a soft solder layer.In one aspect of the disclosure, the mount is further configured with a spacer having the same TEC as that of the submount and bonded to the soft solder layer. A layer of hard solder bonds the spacer and heatsink to one another.In a further aspect of the disclosure, the electroplated metal layer in contact with the other surface of the submount is hundred- or more micron thick. The soft solder is directly bonded to the heatsink.In both aspects of the disclosure, a temperature of a p-n junction of the laser diode remains substantially constant within a 0 to 2° C. temperature range through a predetermined amount of several hundred of repeated thermo-cycles which is indicative of uncompromised integrity of the soft solder.
摘要:
A multi-layer laser diode mount is configured with a submount made from thermo- and electro-conductive material. One of the opposite surfaces of the submount supports a laser diode. The other surface of the submount faces and is spaced from a heatsink. The submount and heatsink are configured with respective thermal expansion coefficients (“TEC”) which are different from one another. The opposite surfaces of the submount are electroplated with respective metal layers one of which is bonded to a soft solder layer.In one aspect of the disclosure, the mount is further configured with a spacer having the same TEC as that of the submount and bonded to the soft solder layer. A layer of hard solder bonds the spacer and heatsink to one another.In a further aspect of the disclosure, the electroplated metal layer in contact with the other surface of the submount is hundred- or more micron thick. The soft solder is directly bonded to the heatsink.In both aspects of the disclosure, a temperature of a p-n junction of the laser diode remains substantially constant within a 0 to 2° C. temperature range through a predetermined amount of several hundred of repeated thermo-cycles which is indicative of uncompromised integrity of the soft solder.
摘要:
A module is configured with a housing enclosing a diode laser. Fast and slow axes collimators are located behind the rear facet of the laser, which along with a front facet, defines an intra-cavity cavity of the laser. The facets are partially transmissive to light and therefore emit laser light. A wavelength selective optical element is aligned with the collimators and configured to reflect light emitted through the back facet and processed by collimators back into the intra-cavity. As a result, the laser beam is emitted through the front facet at a wavelength locked on the desired wavelength of the optical element. A delivery fiber is mechanically coupled to the front facet of diode laser and configured to receive and guide the emitted laser beam along the path of light.