摘要:
A module is configured with a housing enclosing a diode laser. Fast and slow axes collimators are located behind the rear facet of the laser, which along with a front facet, defines an intra-cavity cavity of the laser. The facets are partially transmissive to light and therefore emit laser light. A wavelength selective optical element is aligned with the collimators and configured to reflect light emitted through the back facet and processed by collimators back into the intra-cavity. As a result, the laser beam is emitted through the front facet at a wavelength locked on the desired wavelength of the optical element. A delivery fiber is mechanically coupled to the front facet of diode laser and configured to receive and guide the emitted laser beam along the path of light.
摘要:
A method for manufacturing submounts for laser diodes includes the steps of providing a base configured with a ceramic carrier and a metal layer deposited upon the substrate. The method further includes using a pulsed laser operative to generate a plurality of pulses which are selectively trained at predetermined pattern on the metal layer's surface so as to ablate the desired regions of the metal layer to the desired depth. Thereafter the base is divided into a plurality of submounts each supporting a laser diode. The metal layer includes a silver sub-layer deposited upon the ceramic and having a thickness sufficient to effectively facilitate heat dissipation.
摘要:
A method for manufacturing submounts for laser diodes includes the steps of providing a base configured with a ceramic carrier and a metal layer deposited upon the substrate. The method further includes using a pulsed laser operative to generate a plurality of pulses which are selectively trained at predetermined pattern on the metal layer's surface so as to ablate the desired regions of the metal layer to the desired depth. Thereafter the base is divided into a plurality of submounts each supporting a laser diode. The metal layer includes a silver sub-layer deposited upon the ceramic and having a thickness sufficient to effectively facilitate heat dissipation.
摘要:
A laser diode is configured with a substrate delimited by opposite AR and HR reflectors and a gain region. The gain region bridges the portions of the respective AR and HR reflectors and is configured with a main resonant cavity and at least one side resonant cavity. The main resonant cavity spans between the portions of the respective reflectors, and at least one additional resonant cavity extends adjacent to the main resonator cavity. The gain region is configured so that stimulated emission is generated only in the main resonant cavity. Accordingly, the laser diode is operative to radiate a high-power output beam emitted through the portion of the AR reflector which is dimensioned to shape the output beam with the desired near-field.
摘要:
A laser diode is configured with a substrate delimited by opposite AR and HR reflectors and a gain region. The gain region bridges the portions of the respective AR and HR reflectors and is configured with a main resonant cavity and at least one side resonant cavity. The main resonant cavity spans between the portions of the respective reflectors, and at least one additional resonant cavity extends adjacent to the main resonator cavity. The gain region is configured so that stimulated emission is generated only the main resonant cavity. Accordingly, the laser diode is operative to radiate a high-power output beam emitted through the portion of the AR reflector which is dimensioned to shape the output beam with the desired near-field.