摘要:
Methods, systems, and computer program products for selective layer 2 port blocking using layer 2 source addresses are disclosed. According to one method, a layer 2 frame is received. An I/O port block list is identified based on a layer 2 source address in the layer 2 frame. A set of ports to which the layer 2 fame should be forwarded is identified. The frame is blocked from being forwarded to ports in the set that are also in the I/O port block list.
摘要:
Methods and systems for hitless switch management module failover and upgrade are disclosed. According to one method, a master switch management module participates in network protocols and performs packet forwarding operations. The master switch management module distributes protocol state and packet forwarding information to the slave switch management module. The slave switch management module continuously monitors the operational state of the master switch management module. In response to detecting failure of the master switch management module or a forced failover initiated by the user interface on the master switch management module, the slave switch management module begins network protocol operation in the master mode in a state where the master switch management module last operated correctly.
摘要:
A switching device receives a data packet and searches for a layer 3 multicast destination address specified in a header of the received data packet in a layer 3 multicast forwarding database table. The switch searches for a corresponding port list in a layer 3 egress table if the layer 3 multicast destination address is found. However, if the layer 3 multicast destination address is not found, the switch searches for a layer 2 destination address specified in header of the received data packet in a layer 2 multicast forwarding database table, and the switch searches for a port list in a layer 2 egress table if the layer 2 destination address is found. If neither the layer 3 or layer 2 destination address is found in the searches, the switch discards or floods the received data packet out all ports of the switching device.
摘要:
A network switch has a plurality of data tables accessible to a plurality of networking protocols. Each of the plurality of data tables contains a plurality of entries. One of the plurality of data tables is selected in which to reserve a respective one of the plurality of entries as an entry for use by one of the plurality of networking protocols. The utilization of each of the plurality of data tables is compared responsive to an operation of the one of the plurality of networking protocols that causes a need to reserve the entry, and one of the plurality of data tables is selected in which to reserve the entry, based on the comparison.
摘要:
A first switch at a first edge of an MPLS network establishes a VPLS pseudo-wire over a plurality of label switched paths (LSPs) of the MPLS network that couple the first switch to a second switch at a second edge of the MPLS network. The first switch further load balances data to be transmitted across the VPLS pseudo-wire over the plurality of LSPs. The first switch accomplishes this by maintaining at a first table an indication that the VPLS pseudo-wire traffic is to be transmitted over the plurality of LSPs and further identifying in the first table a pointer to a second table maintaining a plurality of LSP entries corresponding to the respective plurality of LSPs. The first switch then identifies at the second table a pointer to a third table maintaining a plurality of entries, wherein each of the plurality of entries identifies a next hop index. The first switch receives a packet to be transmitted over the VPLS pseudo-wire, computes a hash value on at least one or more portions of the received packet, selects one of the plurality of entries in the third table according to the computed hash value, retrieves the next hop index from the selected one of the plurality of entries in the third table, selects an entry in a fourth table according to the retrieved next hop index, and retrieves from the selected entry in the fourth table an egress port number associated with an egress port to which the received packet is to be directed for transmission across the VPLS pseudo-wire.
摘要:
The subject matter described herein includes a packet forwarding device that implements next hop scaling. Rather than storing a complete set of next hop bindings at each packet processor, the storage of next hop bindings is distributed among packet processors in the packet forwarding device such that each packet processor stores next hop bindings for the hosts that are directly connected to the packet processor. For hosts that are not directly connected to a packet processor, the packet processor stores relay entries. Because of the distributed storage of next hop bindings, the number of hosts that can be served by a single packet forwarding device is increased over packet forwarding devices where each packet processor stores a complete set of next hop bindings for all connected hosts.
摘要:
Systems, mechanisms, apparatuses, and methods are disclosed for dynamically tagging VLANs. For example, in one embodiment such means include: means for receiving a packet having identified therein a source Media Access Control (MAC) address and a Virtual Local Area Network (VLAN) Identifier, wherein the VLAN identifier corresponds to a VLAN which is non-existent on a network switch; means for modifying the packet received to include two VLAN tags, a first VLAN tag corresponding to the VLAN identifier identified within the packet received and a second VLAN tag, distinct from the first; means for determining no forwarding database entry exists for the modified packet; and means for creating the VLAN on the network switch to handle received packets tagged with the VLAN identifier.
摘要:
The subject matter described herein includes methods and systems for conserving multicast port lists in an IP packet forwarding device. According to one embodiment, the method includes providing an IP multicast packet port data structure containing at least a first port list and a second port list. The first and second port lists each contain zero or more port addresses for indicating the ports to which a received IP multicast packet including a group IP address is to be forwarded. An IP multicast packet forwarding database (FDB) is provided where the FDB has at least a first FDB entry and a second FDB entry for forwarding the received IP multicast packet based on its group IP address. The first and second FDB entries each include at least one multicast group IP address and are associated with at least one of the first and the second port lists. It is then determined whether the first and second port lists contain identical information. In response to determining that the first and second port lists contain identical information, the first and second FDB entries are associated with the first port list and hardware resources associated with the second port list are released.
摘要:
The subject matter described herein includes methods, systems, and computer readable media for next hop scaling with link aggregation. According to one aspect of the subject matter described herein, a system for next hop scaling is provided. The system includes a packet forwarding device including a plurality of packet processors for performing next hop and link aggregation group (LAG) selection operations. Within this plurality of packet processors, ingress packet processors are configured to indicate, for received packets that have a next hop on a different packet processor, that an egress next hop selection operation is needed. Egress packet processors of the plurality of packet processors are configured to perform the egress next hop and member selection operations for the packets for which an egress next hop selection operation is indicated, wherein forwarding of the packets is limited to active LAG group members local to the egress packet processor.
摘要:
The subject matter described herein includes methods and systems for dynamically rate limiting slowpath processing of exception packets. According to one embodiment, a method includes monitoring processing resources in a packet forwarding device used for performing slowpath processing of exception packets at the packet forwarding device. It is determined whether usage of the processing resources used for slowpath processing exceeds a first threshold and, in response to determining that the processing resources exceed the first threshold, rate limiting the slowpath processing of the exception packets.