Abstract:
An image sensor includes a pixel array and a row driver block. The pixel array includes a plurality of subpixel groups, each including a plurality of subpixels. Each of the plurality of subpixels is configured to generate a subpixel signal corresponding to photocharge accumulated in response to a photon. The row driver block is configured to generate a first control signal to control the subpixels included in each of the plurality of subpixel groups to accumulate the photocharge in parallel from a first time point to a second time point.
Abstract:
An image sensor includes a first photoelectric conversion element supplying charges to a first charge storage node, a first charge storage element adjusting an amount of charges supplied from a charge supply source to the first charge storage node in response to a feedback signal, and a feedback signal generating circuit generating the feedback signal based on an amount of charges in the first charge storage node.
Abstract:
A color filter array of an image sensor, the color filter array including a plurality of infrared ray (IR) filters, each of which filters out light to transmit wavelengths in an IR region; a plurality of first type color filters; a plurality of second type color filters; and a plurality of third type color filters, wherein some adjacent IR filters are arranged to form a T shape.
Abstract:
An image sensor includes a light source that emits modulated light such as visible light, white light, or white light-emitting diode (LED) light to a target object, a plurality of pixels, and an image processing unit. The pixels include at least one pixel for outputting pixel signals according to light reflected by the target object. The image processing unit simultaneously generates a color image and a depth image from the pixel signals of the at least one pixel.
Abstract:
A depth estimation apparatus and method are provided. The depth estimation method includes grouping a plurality of frame signals generated by a depth pixel into a plurality of frame signal groups which are used to estimate a depth to an object without a depth estimation error caused by an omission of a frame signal, the grouping of the a plurality of frame signals based on whether an omitted frame signal exists in the plurality of frame signals and based on a continuous pattern of the plurality of frame signals; and estimating the depth to the object using each of the plurality of frame signal groups.
Abstract:
An apparatus for detecting a probe position error includes a position error extracting unit extracting probe position errors from signals detected by a probe; a position error adding unit calculating the probe position errors in units of a predetermined time; and a signal processing unit storing a past probe position error calculated by the position error extracting unit and generating a probe position error by processing the past probe position error and a current probe position error. An apparatus for tracking data includes a scanner moving a data storage medium; a probe detecting the signals from a data storage medium; an error detector detecting probe position errors in a half-period of an error extracting signal by applying the error extracting signal used to extract the probe position errors to the signal detected by the probe; and a compensator compensating for the probe position errors detected by the error detector.
Abstract:
Provided are a resistive memory device having a probe array and a method of manufacturing the same. The resistive memory device includes a memory part having a bottom electrode and a ferroelectric layer sequentially formed on a first substrate; a probe part having an array of resistive probes arranged on a second substrate, with the tips of the resistive probes facing the ferroelectric layer so as to write and read data on the ferroelectric layer; and a binding layer which grabs and fixes the resistive probes on or above the ferroelectric layer. The method of manufacturing the resistive memory device includes forming a bottom electrode and a ferroelectric layer sequentially on a first substrate; forming an array of resistive probes on a second substrate; and wafer level bonding the first substrate to the second substrate using a binding layer such that tips of the resistive probes face the ferroelectric layer.
Abstract:
Provided are a bit patterned medium having a super-track, a method of tracking a track of the bit patterned medium, a head appropriate for the bit patterned medium, and an information recording/reproducing apparatus including the bit patterned medium and the head. The bit patterned medium includes a substrate, and a recording layer comprised of a plurality of bit cells which are formed on the substrate by being separated from each other, along a plurality of tracks. Each of the plurality of tracks includes a super-track comprised of a plurality of sub-tracks. Bit cells formed on a sub-track from among the plurality of sub-tracks in the super-track are disposed so as to deviate from bit cells formed on another sub-track from among the plurality of sub-tracks in the super-track. A track ID (identification) for recognizing the super-track, and a servo burst generating a position error signal when a head tracks the super-track, are arranged in an area of each of the plurality of tracks. Meanwhile, the head includes a writing head recording information in units of sub-tracks, and a reading sensor reproducing the information in units of super-tracks.
Abstract:
A method and apparatus for calibrating a position of an image sensor, and a method of detecting the position of an image sensor are provided. The method of calibrating the position of an image sensor includes: obtaining first image information corresponding to a first position of the image sensor and obtaining second image information corresponding to a second position of the image sensor, calculating cross-correlation values between the obtained first image information and second image information; determining whether or not the calculated cross-correlation values are symmetrical; setting a driving power value of the image sensor for moving the image sensor the distance between the first position to the second position as a reference driving power value for moving the image sensor one-pixel distance, if it is determined that the cross-correlation values are not symmetrical; and calibrating the position of the image sensor by using the set driving power value.
Abstract:
An XY stage module, a storage system including the same and a method for facating the XY stage module are provided. The XY stage module includes: a base; an XY stage horizontally moving above the base in a first direction and a second direction that is orthogonal to the first direction; a supporting unit disposed at the base for elastically supporting the XY stage; a stiffener for preventing the XY stage from being rotated; and a position sensor having a movable comb-shaped structure disposed at one side of the stiffener and having at least one movable comb and a fixed comb-shaped structure fixed on the base and having at least one fixed comb meshed with the movable comb to be separated at a predetermined gap for measuring a movement of the XY stage in the first direction and the second direction.