Abstract:
Enclosed re-programmable non-volatile memory cards include at least two sets of electrical contacts to which the internal memory is connected. The two sets of contacts have different patterns, preferably in accordance with two different contact standards such as a memory card standard and that of the Universal Serial Bus (USB). One memory card standard that can be followed is that of the Secure Digital (SD) card. The cards can thus be used with different hosts that are compatible with one set of contacts but not the other. A cover that is hinged to the card to normally cover one set of contacts can be manually rotated out of the way when that set of contacts is being used.
Abstract:
Enclosed re-programmable non-volatile memory cards include at least two sets of electrical contacts to which the internal memory is connected. The two sets of contacts have different patterns, preferably in accordance with two different contact standards such as a memory card standard and that of the Universal Serial Bus (USB). One memory card standard that can be followed is that of the Secure Digital (SD) card. The cards can thus be used with different hosts that are compatible with one set of contacts but not the other. A cover that is hinged to the card to normally cover one set of contacts can be rotated out of the way by hand when that set of contacts is being used.
Abstract:
A removable memory device is provided. The device includes a plurality of re-programmable non-volatile memory cells; and a controller including a processor and a controller memory, wherein an application is launched from the removable memory device and executed on a host system when the removable memory device interfaces with the host system, and the application launches a display window on a display device, wherein the display window is controlled by the application and is used to display advertisement content that is stored in the plurality of memory cells or from a server that is accessible by the host system.
Abstract:
Enclosed re-programmable non-volatile memory cards include at least two sets of electrical contacts to which the internal memory is connected. The two sets of contacts have different patterns, preferably in accordance with two different contact standards such as a memory card standard and that of the Universal Serial Bus (USB). One memory card standard that can be followed is that of the Secure Digital (SD) card. The cards can thus be used with different hosts that are compatible with one set of contacts but not the other. A cover that is hinged to the card to normally cover one set of contacts can be rotated out of the way by hand when that set of contacts is being used.
Abstract:
Enclosed re-programmable non-volatile memory cards include at least two sets of electrical contacts to which the internal memory is connected. The two sets of contacts have different patterns, preferably in accordance with two different contact standards such as a memory card standard and that of the Universal Serial Bus (USB). One memory card standard that can be followed is that of the Secure Digital (SD) card. The cards can thus be used with different hosts that are compatible with one set of contacts but not the other. A cover that is hinged to the card to normally cover one set of contacts can be manually rotated out of the way when that set of contacts is being used.
Abstract:
Enclosed re-programmable non-volatile memory cards include at least two sets of electrical contacts to which the internal memory is connected. The two sets of contacts have different patterns, preferably in accordance with two different contact standards such as a memory card standard and that of the Universal Serial Bus (USB). One memory card standard that can be followed is that of the Secure Digital (SD) card. The cards can thus be used with different hosts that are compatible with one set of contacts but not the other. A cover that is hinged to the card to normally cover one set of contacts can be rotated out of the way by hand when that set of contacts is being used.
Abstract:
A mating plug and receptacle are positively held together by a latch that is manually releasable to allow their separation. An example is a USB plug with a cap having a receptacle into which the plug is inserted for protection when the plug is not in use. In a preferred embodiment, a slide is carried within the receptacle to move a distance with the plug as it is inserted into and withdrawn from the receptacle. Latches prevent movement of the slide to release the plug until an external actuator is manually operated. Detents on arms formed as part of the slide engage holes in the plug when the plug is inserted into the receptacle but are released by riding against cam surfaces as the slide, after being unlatched, moves upon withdrawal of the plug from the receptacle.
Abstract:
A flash memory mass storage drive stores user files in a convenient credit card sized drive. Embodiments function as both a credit card and a mass storage drive. Communication may be through a host interface connector such as a USB connector, a magnetic interface, a smart card interface, and/or a near field communication interface. In certain embodiments the drive comprises a portion that is sufficiently thin to be swiped through a standard credit card, ATM, or point of sale device. The USB connector of the drive can easily be plugged into even a crowded receptacle of a host computing device.