Abstract:
A catalyst for use with ammonia for the selective reduction of nitrogen oxides in waste gases. The catalyst comprises a mixture of substances which has high activity and selectivity with regard to nitrogen oxide conversion and high sorption capabilities with regard to ammonia, but low oxidation capabilities with regard to sulfur dioxide, ammonia, or similar substances. The invention also provides a process for the manufacture and use of such catalysts.
Abstract:
A catalyst for use in a process for the removal of nitrogen oxides from exhaust gases contaminated with dust in which the process uses ammonia. The catalyst is made of a material which is easily disposable. Furthermore, the catalyst should be completely used up in the catalysis. The catalyst comprises individual ceramic bricks with a porous surface, and passages therethrough for the flow of the exhaust gases. The bricks exhibit a resistance to abrasion which is designed so that the dust of the exhaust gas which flows through the passages erodes the catalyst surface, thereby reactivating the catalyst. The exhaust gas carries the dust and the eroded material along with it.
Abstract:
Coke is produced from coal by coking the coal, and optionally by drying and/or preheating the coal prior to coking, and further optionally by dry cooling the coke subsequent to coking. At least the coking step is achieved in a pressure tight container which may be a transportable or tippable container. The coking step is performed in the container by conducting a gas through the container in direct or indirect heat exchange relationship with the coal and forming coke. The coking step includes a phase of lump coke formation achieved by heating the coal in a temperature range of between approximately 250.degree. and 600.degree. C. by indirect heat exchange only.
Abstract:
A structure made from catalyst for use in the separation of nitrogen oxides from combustion exhaust gases which contain dust. The catalytic structure has plates with spaces therebetween to carry a flow of the exhaust gas therethrough. The catalyst is constructed of individual ceramic plates. The abrasion or wear resistance of the plates is chosen such that the dust in the exhaust gases flowing through the spaces abrades the plate surface at a rate which is at least equivalent to the deactivation of the catalyst surface by action of the nitrogen oxides, which constantly provides a fresh catalyst surface for reaction with the nitrogen oxides. The movement of the exhaust gas through the catalytic structure carries the dust and abraded material along with it and out of the structure.
Abstract:
Apparatus for the production of ammonia synthesis gas by the catalytic cracking of coke oven gas in the presence of water vapor and air is disclosed. The apparatus includes concentric inner and outer pipes, a first annular reaction zone between the pipes and a second reaction zone inside the inner pipe, both zones containing a catalyst. The purified coke oven gas along with air and water vapor is introduced into the interior of the outer pipe, i.e., into the first reaction zone at one end. The gas flows along the length of the pipes and then into the inner pipe, i.e., the second reaction zone, through a number of openings in the end of the inner pipe opposite the end of the outer pipe where the coke oven gas was initially introduced. The gas then flows along the length of the inner pipe to the opposite end where the cracked gas is removed.