Abstract:
Systems and methods for processing pyrolyzable materials in order to recover one or more usable end products are provided. Pyrolysis methods and systems according to various aspects of the present invention are able to thermally decompose carbon-containing materials, including, for example, tires and other rubber-containing materials, in order recover hydrocarbon-containing products including synthesis gas, pyrolysis oil, and carbon black. Systems and methods according to aspects of the present invention may be successful on a commercial scale, and may be suitable for processing a variety of feedstocks, including, but not limited to, used tires and other types of industrial, agricultural, and consumer waste materials.
Abstract:
The carbonizing apparatus includes a heating chamber that thermally decomposes a treatment object by heating, a preliminary chamber through which the treatment object is carried from an outside into the heating member in a state in which the heating chamber is substantially shielded from the outside, the preliminary chamber being provided between the heating chamber and the outside, a plurality of cooling chambers in which the treatment object is treated after thermal decomposition, shielding doors that close the preliminary chamber, the heating chamber, and the cooling chambers arranged in series, a transport means that transports the treatment object while opening and closing the shielding doors, and exhaust pipes through which gas discharged from the preliminary chamber, the heating chamber, and the cooling chambers is exhausted. The treatment object is carbonized while being sequentially passed through the preliminary chamber, the heating chamber, and the cooling chambers.
Abstract:
A pyrolysis process and reactor converts various hydrocarbons such as waste materials, for example, scrap polymers, tires, etc., into various chemical components or amounts thereof, not otherwise produced by conventional pyrolytic processes. A large reactor size is utilized in association with a low heat input per unit weight of charge. A thick pyrolyzate/“char” layer is formed during pyrolysis. The product or various components thereof can be utilized as a fuel or octane additive.
Abstract:
This invention relates to a simple, convenient, portable mini-distillation apparatus for the production of essential oils and hydrosols, said apparatus is useful to distill essential oils and hydrosols such as rose water, ajowain water from fresh and dried plant material like leaves, flowers, roots and rhizomes by water distillation, water and steam distillations and as an optional, steam distillation can also be perform at atmospheric pressure as well as slightly higher and lower than atmospheric pressure, said apparatus can be heated on brick-clay furnace with small agro-waste, LPG cooking gas, electrically heated stove or kerosene/diesel burner etc. and requires minimum attention during handling; since the apparatus is made of stainless steel and glass, the essential oil distilled is of better quality.
Abstract:
A process for the recycling of organic waste including the steps of passing a waste into a first sealed container, introducing an inert gas into the interior of the first sealed container so as to displace oxygen from within the container, heating the interior of the first sealed container to a temperature of between 1,000.degree. and 2,700.degree. F. so as to form a heated gas within the sealed container, filtering the heated gas so as to remove sulfur and chlorine byproducts of the heated gas, and transmitting the filtered gas to a storage vessel. The step of passing includes the steps of storing a liquid waste within a waste container and injecting carbon dioxide into the waste container so as to propel the liquid waste to the sealed container. The inert gas is passed continuously into the sealed container during the step of heating. The inert gas can be argon. The filter can include a sodium hydroxide filter and a chlorine-removing filter. A water filter receives the heated gas so as to remove carbon components of the heated gas.
Abstract:
ENT ATMOSPHERES OF DIFFERENT COMPOSITION AND/OR DIFFERENT THERMAL VALUES CAN BE MAINTAINED IN THE RESPECTIVE COMPARTMENTS FOR CONTACT WITH THE LAYER.
A TUNNEL FURNACE HAS AN ELONGATED FURNACE CHAMBER ALONG WHOSE BOTTOM A SUPPORT TRAVELS IN LONGITUDINAL DIRECTION. FROM THE ROOF TRANSVERSE PARTITIONS EXTEND DOWNWARDLY TOWARDS THE SUPPORT AND SUBDIVIDE THE SPACE ABOVE THE SAME INTO A PLURALITY OF INDIVIDUAL TREATING COMPARTMENTS. MATERIAL TO BE HEAT-TREATED IS DEPOSITED ON THE SUPPORT AS RELATIVELY THIN LAYER WHICH IS ADVANCED THROUGH THE CHAMBER SO THAT EACH INCREMENT OF THE LAYER BECOMES EXPOSED TO THE RESPECTIVE COMPARTMENT. THE COMPARTMENTS ARE PROVIDED WITH INLETS AND OUTLETS FOR GAS SO THAT DIFFER-