摘要:
A structure made from catalyst for use in the separation of nitrogen oxides from combustion exhaust gases which contain dust. The catalytic structure has plates with spaces therebetween to carry a flow of the exhaust gas therethrough. The catalyst is constructed of individual ceramic plates. The abrasion or wear resistance of the plates is chosen such that the dust in the exhaust gases flowing through the spaces abrades the plate surface at a rate which is at least equivalent to the deactivation of the catalyst surface by action of the nitrogen oxides, which constantly provides a fresh catalyst surface for reaction with the nitrogen oxides. The movement of the exhaust gas through the catalytic structure carries the dust and abraded material along with it and out of the structure.
摘要:
A catalyst for use in a process for the removal of nitrogen oxides from exhaust gases contaminated with dust in which the process uses ammonia. The catalyst is made of a material which is easily disposable. Furthermore, the catalyst should be completely used up in the catalysis. The catalyst comprises individual ceramic bricks with a porous surface, and passages therethrough for the flow of the exhaust gases. The bricks exhibit a resistance to abrasion which is designed so that the dust of the exhaust gas which flows through the passages erodes the catalyst surface, thereby reactivating the catalyst. The exhaust gas carries the dust and the eroded material along with it.
摘要:
A catalyst for use with ammonia for the selective reduction of nitrogen oxides in waste gases. The catalyst comprises a mixture of substances which has high activity and selectivity with regard to nitrogen oxide conversion and high sorption capabilities with regard to ammonia, but low oxidation capabilities with regard to sulfur dioxide, ammonia, or similar substances. The invention also provides a process for the manufacture and use of such catalysts.
摘要:
In a process for cleaning a waste gas containing various pollutants, the exhaust gas with the pollutants is introduced directly into a reduction reactor. In the reactor, the pollutants are reduced by ammonia. The catalyst used is iron oxide material or a mixed oxide material of iron oxide and chromium oxide, or a mixture of the mixture material of the mixed oxide material and the iron oxide material.
摘要:
A process for the removal of nitrogen oxides and soot from exhaust gases from machines and combustion installations burning heavy fuel oil by means of free-passage catalysts at increased temperatures with the addition of ammonia into the exhaust gas stream ahead of the catalysts. To make the process mre effective, the soot adhering to the catalyst surfaces is removed by burning it off and/or by friction resulting from the admixture of sand, ash or similar abrasive mixtures into the exhaust gas stream ahead of the catalysts.
摘要:
The invention relates to a process for the manufacture of a catalyst for the reduction of nitrogen oxides in exhaust gases. The catalyst contains a metal oxide. The catalyst is preferably used for catalytic reduction with ammonia. The process comprises screening a natural goethite iron ore to the required grain size and then treating the ore with sulfuric acid. Subsequently, the goethite iron ore is heated to a temperature which approximately equals the temperature at which it will be used in the catalytic reaction.
摘要:
In a process for the manufacture of catalyst moldings a natural raw material containing Fe.sub.2 O.sub.3, Cr.sub.2 O.sub.3 or another such catalyst component such as TiO.sub.2, NbO.sub.2, WO.sub.3, V.sub.2 O.sub.5 or MoO.sub.3 is screened to a grain size equal to or less than approximately 0.25 mm. This screened base mixture is thoroughly blended, and then preferably a concentrated sulphuric acid is added. This mixture of material is then pressed into a molding in a hydraulic press with a pressure of approximately 500 bar to produce the molding.
摘要翻译:在制造催化剂模制品的方法中,将含有Fe 2 O 3,Cr 2 O 3或另一种这样的催化剂组分如TiO 2,NbO 2,WO 3,V 2 O 5或MoO 3的天然原料筛分至等于或小于约0.25mm的晶粒度。 将该筛分的基础混合物充分混合,然后优选加入浓硫酸。 然后将该材料混合物压制成压力为约500巴的液压机中的模塑制品以产生模制品。
摘要:
A process and apparatus for the dry cooling of coke involves the provision of a vessel having therein first and second zones in full communication with each other. Hot coke from a coking operation is introduced into the first zone and is passed through the first and second zones. Raw coke oven gas from the coking operation is introduced into the first zone, thereby reducing the temperature of the coke, while cleaning the raw coke oven gas to form cleaned coke oven gas. The cleaned coke oven gas is removed from the first zone, cooled, and then directly or indirectly utilized as a heat carrier gas introduced into the second zone to therein further reduce the temperature of the coke. The thereby further cooled coke is removed from the second zone.
摘要:
A method for the production of high-caloric content gases is disclosed wherein feed gases containing CO and H.sub.2 are passed through at least two consecutive catalytic fluidized bed stages having cooling elements wherein, the feed gases being introduced to the first stage under pressure and to the subsequent stages under a pressure which is less than the pressure of the next preceding stage, and the gas produced from each preceding stage is fed to the next stage as a diluting gas. As a result of using the method of the present invention, one can avoid the necessity of compression of the feed gases in the subsequent reaction stages, thereby decreasing the cost as well as the technical difficulties encountered in the process.
摘要:
A method of catalytic conversion of feed gases, particularly of a low-sulphur gas mixture rich in carbon monoxide and hydrogen, into a product gas mixture containing methane and/or higher hydrocarbons under high pressure includes the step of removing heat of reaction from the catalytic conversion from a reaction zone by feeding both water and steam to form a cooling medium through a pipe coil in the reaction zone. This forms superheated steam in the pipe coil and the superheated steam is then converted into another form of energy, for example in a turbo-generator. Preferably the reaction zone is a fluidized bed. For carrying out this method a reactor is used, which is preferably a fluidized bed reactor and in this reactor the piping system forming the superheater is disposed in the lower part of the reaction zone. The superheater is connected to a feedwater line and to a steam inlet line and a steam turbine is connected to a steam output line leading from the superheater.