Abstract:
A general purpose energy saving light amplification unit suitable as a lantern, guide light, background light, safety light, ornament or decorative object, said unit adapted to harness external surrounding ambient light, or other remote energy sources from at least two directions, employing a plurality of reflector members to receive and concentrate energy in order to luminesce or fluoresce an optimally placed mutually shared luminescent or fluorescent body member, lodged in a tapered or convergent section of a hyperbola or between at least two juxtaposed reflectors, stimulating photon and electron activity resulting in maximum amount of transmitted visible light from at least two directions, irrespective of receptive direction or angle of origin of light source.
Abstract:
A general purpose energy saving light amplification unit suitable as a lantern, guide light, background light, safety light, ornament or decorative object, said unit adapted to harness external surrounding ambient light, or other remote energy sources from at least two directions, employing a plurality of reflector members to receive and concentrate energy in in order to luminesce or fluoresce an optimally placed mutually shared luminescent or fluorescent body member, lodged in a tapered or convergent section of a hyperbola or between at least two juxstaposed reflectors, stimulating photon and electron activity resulting in maximum amount of transmitted visible light from at least two directions, irrespective of receptive direction or angle of origin of light source.
Abstract:
A methodological approach of achieving a systematic exchange of light by employment and interplay of photo optic bodies via transmissive mediums. The present invention provides a synaptical junction or medium of exchange between optic bodies so that energy in the form of light, following behavioural patterns of waves and particles, may mutually be exchanged. Incidental rays are methodically counter reflected between neighbouring optic bodies with resultant dispersion and separation of various wavelengths. Several benefits accrue from this rendez-vous of optical bodies within the confines of a Light Distributor. Light can be more readily re-directed within 360 degrees and concentrated toward specific target areas. The unit has retro-reflective properties and generates a secondary visible light which may be reflected to all cardinal points.
Abstract:
A general purpose energy saving light amplification unit suitable as a lantern, guide light, background light, safety light, ornament or decorative object, said unit adapted to harness external surrounding ambient light, or other remote energy sources from at least two directions, employing a plurality of reflector members to receive and concentrate energy in in order to luminesce or fluoresce an optimally placed mutually shared luminescent or fluorescent body member, lodged in a tapered or convergent section of a hyperbola or between at least two juxstaposed reflectors, stimulating photon and electron activity resulting in maximum amount of transmitted visible light from at least two directions, irrespective of receptive direction or angle of origin of light source.
Abstract:
A versatile reflector light system able to utilize ambient light in order to increase illumination in a decorative or useful manner, on behalf of it's own appearance, or in combination with ornaments as well as function as specially lit reflectors for pedestrians and motorists. Modified versions may be powered by induction methods in order to create motion and additional light.
Abstract:
In a method of semiconductor integrated circuit manufacture, a manufacturing process improvement provides highly planar, oxide-filled trench isolation of circuit device areas. The process improvement includes formation of a device area covered by a relatively thin insulating layer of oxide by a trenching process that forms a trench adjacent the device area. The thin insulating layer of oxide is extended over the side surface transition between the device area and the trench and then an insulating layer of crystalline dielectric material relatively thicker than the thin insulating layer is applied, which builds the trench at least to the level of the device area. A first layer of photoresist is applied over the thick insulating layer. The portion of the first photoresist layer overlying the device area is photolithographically removed, and then a second layer of photoresist is applied over the first layer; the second layer is applied to a thickness resulting in a relatively planar surface of photoresist overlying the trench and device area. All of the layers overlying the device area are removed by a process which operates toward the substrate surface on which the device area is formed. The removal process removes the first and second photoresist layers, the oxide of the relatively thin layer, and the crystalline dielectric material at substantially the same rate until the device area is expoded. When the device area is exposed, the removal process is terminated. The result provides a device area isolated by an oxide-filled trench, with the surface transition from the device area to the trench oxide being relatively planar.
Abstract:
A method for performing high resolution lithography. The first step involves disposing on a substructure having a surface layer to be patterned a layer of a resist material characterized by both substantial degradation sensitivity for incident ionizing radiation of a predetermined type and substantial instability of undegraded regions for a predetermined plasma etchant which attacks the surface layer. The next step is to expose a prearranged pattern of regions of the resist layer to the predetermined type of radiation to produce a corresponding pattern of degraded resist regions. Then the pattern of degraded resist regions is removed using a preselected developing solution. The next step is to modify the resist material to increase the stability thereof for the plasma etchant by exposing the developed resist layer to ionizing radiation of a type which has been predetermined to degrade the resist material and then baking the degraded resist layer. The final step is to etch the exposed regions of the surface layer using said plasma etchant.
Abstract:
A Safety reflector suitable as a road stud or hazard reflecting ornament able to utilize ambient light without solar panels batteries or diodes, in order to reflect light multi-dimensionally.
Abstract:
A wrap system for a bucket or other vessel that is comprised of a pliant sheet of material that encases all or part of the outer surface of said bucket or vessel and is textured to resemble a desired article. The wrap can be removed but is fitted tight enough as not to fall off during normal use. The textures can include but not be limited to sports balls, (i.e. basketballs, footballs, or baseballs) or company logos, insignias, or a combination of the two.
Abstract:
A Safety reflector suitable as a road stud or hazard reflecting ornament able to utilize ambient light without solar panels batteries or diodes, in order to reflect light multi-dimensionally