Abstract:
A liquid chromatography interface is provided having an integrated column/ESI tip assembly including a liquid chromatography separation column, an ESI tip for generating ions having at least one emitting channel, and a temperature-controlled enclosure surrounding the liquid chromatography separation column. The enclosure has at least one opening and the ESI tip is exposed outside the enclosure through the opening. The enclosure has a heating or cooling device providing a substantially homogeneous distribution of temperature throughout an internal space of the enclosure where the liquid chromatography separation column is disposed. The enclosure includes at least one gas flow mixing element to permit heat exchange by directing a flow of gas toward the ESI tip. The integrated column/ESI tip assembly resides within a thermo-stabilized volume of substantially the same temperature from an entrance of the liquid chromatography separation column to the outlet of the ESI tip.
Abstract:
A liquid chromatography interface is provided having an integrated column/ESI tip assembly including a liquid chromatography separation column, an ESI tip for generating ions having at least one emitting channel, and a temperature-controlled enclosure surrounding the liquid chromatography separation column. The enclosure has at least one opening and the ESI tip is exposed outside the enclosure through the opening. The enclosure has a heating or cooling device providing a substantially homogeneous distribution of temperature throughout an internal space of the enclosure where the liquid chromatography separation column is disposed. The enclosure includes at least one gas flow mixing element to permit heat exchange by directing a flow of gas toward the ESI tip. The integrated column/ESI tip assembly resides within a thermo-stabilized volume of substantially the same temperature from an entrance of the liquid chromatography separation column to the outlet of the ESI tip.
Abstract:
A system and method for mass analysis of ions. The system includes an orthogonal acceleration time-of-flight mass analyzer having at least two channels configured to receive respective groups of ions from respective ion sources and having a field-free section configured to mass-separate ions during flight time. The groups of ions are directed to different ones of the channels of the mass analyzer for mass analysis of the respective groups of ions, and at least a part of the field-free section is shared between the channels. The method introduces the ions into an orthogonal acceleration time-of-flight mass analyzer, directs groups of ions from respective ones of the two sources into different channels of the mass analyzer, and simultaneously mass-analyzes the groups of ions from the different channels.