Abstract:
An antenna array for radar transceivers, in particular for ascertaining distance and/or speed in the surroundings of vehicles, a first antenna part being situated on a carrier and a second antenna part being situated on another carrier situated at a distance from the first. The first antenna part has two generally rectangular primary exciter patches which adjoin each other on one edge, where they are short-circuited toward ground, two primary exciter patches have two separate supply lines, and the second antenna part comprises two mutually separated rectangular secondary exciter patches, which partially cover the primary exciter patches and which have, in the region of the ground short-circuit of the primary exciter patches, in the beam direction, a distance from each other that at least exposes the ground short-circuit.
Abstract:
A device is described for igniting an air-fuel mixture in an internal combustion engine using a high-frequency electric power source having a coaxial waveguide structure (5) into which the high-frequency electric power may be coupled and whose one end protrudes into the individual combustion chamber of a cylinder of the internal combustion engine. The one end of the coaxial waveguide structure (5) is designed as an igniter (7a) in such a way that, when a voltage potential is applied, a field structure (22), protruding into the combustion chamber, and thus a free-standing plasma in the air-fuel mixture at the inner conductor (7, 7a), projecting from the waveguide structure, is generatable via an abrupt and/or smooth cross-section change (21) of the inner conductor (7) and/or the outer conductor (6).
Abstract:
The device has a printed-circuit board (5), on one side of which at least one antenna (1) is located and, on the other side of which electrical circuits (3) are located. An electromagnetic shield between the antenna (1) and the electrical circuits (3) is realized in a manner that is simple with regard for production engineering by locating a feeder network (13, 15)—developed using a coplanar circuit technique and with which the at least one antenna (1) is contacted—on the antenna-side surface of the printed-circuit board (5), and by covering the antenna-side surface of the printed-circuit board (5) with the connected-to-ground outer conductor (45) of the coplanar circuit to such an extent that the required shield between the antenna (1) and the electrical circuits (3) is produced as a result.
Abstract:
The invention relates to a housing for an electronic device in microwave technology, which is comprised of three tightly connected parts (2, 8, 11). A middle part (2) is comprised of a metal plate to which at least one circuit board (6, 7) can be attached and recesses are provided which, together with the at least one circuit board (6, 7), can produce chambers (4, 5) into which the components of the one electronic circuit protrude. Furthermore, a plastic bottom part (8) with a connector device (9) and a plastic top part (11) are provided which likewise produce chambers (12, 13) for electronic and/or microwave components.
Abstract:
A device for directionally emitting and/or receiving electromagnetic radiation includes at least one printed circuit board having at least one transmitting/receiving element, at least one focusing dielectric lens, and at least one additional prefocusing body, which is positioned between the transmitting/receiving element and the dielectric lens. A cover is positioned in the plane between the transmitting/receiving element and the dielectric lens, the cover having at least one bushing for the additional prefocusing body, and the cover surrounding and fixing in place the additional prefocusing body held in the bushing.
Abstract:
In a lens arrangement for collimating radar waves for distance sensors, in particular for motor vehicles, several sublenses are arranged integrally next to one another. A lobe enlargement necessary for angular analysis is thereby achieved. The range is only slightly reduced as compared to a lens having a surface area of the same size.
Abstract:
To improve the space factor of a barium titanate resonator, the resonator is a tubular carrier (11) having metal layers on the inner and outer surfaces. At least one of the metal layers is axially interrupted by a slit. Terminal connections for the resonator are located adjacent the slit on the interrupted layer, and on the continuous layer. For shielding, preferably, the continuous layers at the outside and end tabs (FIG. 4) may additionally be provided. More than one axially staggered inner/outer electrode layer system may be provided on one tubular carrier.
Abstract:
A mechanical support device (10) for a sensor plate (18) of a device for transmitting and/or receiving electromagnetic high-frequency signals, is designed as a winding core (24, 26) of at least one coil (32, 32′, 32″; 34, 34′, 34″; 36, 36′, 36″) in an inductive sensor.
Abstract:
In an antenna system, an antenna feeding substrate is connected by its conductor structures via field coupling to planar antenna radiating elements. A mounting part, able to be fixed in position against the antenna feeding substrate, is provided for the antenna radiating elements. The mounting part itself or a housing part able to be joined to it with form locking is used for the HF shielding of the antenna feeding substrate. The mounting part and/or housing part are structured in such a way that, viewed from the planar antenna radiating elements in the radiation direction, a wave guidance is achieved.
Abstract:
It is provided that the semiconductor component is a component of a semiconductor circuit (10) comprising a first silicon layer (12), an adjoining silicon dioxide layer (insulating layer (14)) and a subsequent further silicon layer (structured layer (16)) (SOI wafer), and the semiconductor component comprises an IMPATT oscillator (30), having a resonator (24) which includes a metallized cylinder (18) of silicon, disposed in the structured layer (16); a coupling disk (28) covering the cylinder (18) in the region of the first layer (12); and an IMPATT diode (32), communicating with the cylinder (18) of the resonator (24) via a recess (38) in the coupling disk (28); and a reference oscillator (46) of lower frequency, having a resonator (24) which includes a metal cylinder (18) of silicon, disposed in the structured layer (16), and coupling disk (28) covering the cylinder in the region of the first layer (12); and a microwave conductor, communicating with the cylinder (18) of the resonator (24) via a recess (38) in the coupling disk (28), and the reference oscillator, via an active oscillator circuit (58), serves the purpose of frequency stabilization of the IMPATT oscillator (30); with integrated Schottky diodes; and a transmitting and receiving antenna (49).