摘要:
A fiber-end surface structuring chamber or system having a main body with multiple ports including a fiber-holder port, a process port that is either a stamp/shim holder port or a plasma etching enabler port, an evacuation port, a gas delivery port, and one or more observation ports, where the fiber-end surface structuring system forms structures directly into the end of the fiber to enhance transmission of light over a wide range of wavelengths and increase the laser damage threshold.
摘要:
The present invention is generally directed to a photonic bad gap fiber and/or fiber preform with a central structured region comprising a first non-silica based glass and a jacket comprising a second non-silica based glass surrounding the central structured region, where the Littleton softening temperature of the second glass is at least one but no more than ten degrees Celsius lower than the Littleton softening temperature of the first glass, or where the base ten logarithm of the glass viscosity in poise of the second glass is at least 0.01 but no more than 2 lower than the base ten logarithm of the glass viscosity in poise of the first glass at a fiber draw temperature. Also disclosed is a method of making a photonic bad gap fiber and/or fiber preform.
摘要:
A method and apparatus for making a substantially void-free preform for a microstructured optical fiber using a one-step process is provided. A preform is prepared from specialty glasses using a direct extrusion method. A die for use with the direct extrusion method is also provided, and a method for drawing the preform into a HC-PBG fiber for use in transmitting infra-red wavelength light is also provided. The preform comprises an outer jacket made of solid glass, a cladding having a plurality of air holes arranged in a desired pattern within the jacket, and a core which is hollow.
摘要:
An optical fiber having microstructured terminal end suitable for reducing Fresnel losses. In an exemplary embodiment, the microstructured surface includes a plurality of protrusions, recesses or combinations thereof that effectively and incrementally change the refractive index of the terminal end of the optical fiber such that the refractive index is gradually drawn closer to the refractive index value of the surrounding environmental medium.
摘要:
This invention pertains to fiber termination combination which includes an optical fiber having a fiber core for transmitting a highly energetic optical signal that can damage the fiber and a structured region around the core for directing the optical signal into the core, the structured region being characterized by multiple channels of smaller internal diameter than the core defined by thin walls disposed around said core; a ferrule, with an opening therein for locating said fiber, at the end of said fiber enveloping said fiber extremity which cooperates with said blocking structure to block the optical signal from impinging on said microstructured region of said fiber; and a blocking structure disposed over the end of said fiber with an opening mating with said fiber core, said blocking structure blocking the optical signal from impinging on said microstructured region of said fiber.
摘要:
The present invention is generally directed to a method of making a hollow-core photonic band gap preform from a specialty glass by pressing a specialty glass through a die to form a tube wherein the outer transverse shape of the tube is a hexagon, triangle, quadrilateral, or other polygon; stretching the tube to form a micro-tube with approximately the same outer transverse shape as the tube; stacking a plurality of micro-tubes into a bundle minimizing voids between adjacent micro-tubes and forming a central longitudinal void wherein the plurality of micro-tubes within the bundle comprise an inner structured region of the preform and the central void of the bundle comprises a hollow core in the preform; and inserting the bundle into a jacket tube. Also disclosed are the hollow-core photonic band gap preform and fiber formed by this method.
摘要:
The present invention is generally directed to a photonic bad gap fiber and/or fiber preform with a central structured region comprising a first non-silica based glass and a jacket comprising a second non-silica based glass surrounding the central structured region, where the Littleton softening temperature of the second glass is at least one but no more than ten degrees Celsius lower than the Littleton softening temperature of the first glass, or where the base ten logarithm of the glass viscosity in poise of the second glass is at least 0.01 but no more than 2 lower than the base ten logarithm of the glass viscosity in poise of the first glass at a fiber draw temperature. Also disclosed is a method of making a photonic bad gap fiber and/or fiber preform.
摘要:
The present invention is generally directed to a photonic bad gap fiber and/or fiber preform with a central structured region comprising a first non-silica based glass and a jacket comprising a second non-silica based glass surrounding the central structured region, where the Littleton softening temperature of the second glass is at least one but no more than ten degrees Celsius lower than the Littleton softening temperature of the first glass, or where the base ten logarithm of the glass viscosity in poise of the second glass is at least 0.01 but no more than 2 lower than the base ten logarithm of the glass viscosity in poise of the first glass at a fiber draw temperature. Also disclosed is a method of making a photonic bad gap fiber and/or fiber preform
摘要:
Fiber optic amplification in a spectrum of infrared electromagnetic radiation is achieved by creating a chalcogenide photonic crystal fiber (PCF) structure having a radially varying pitch. A chalcogenide PCF system can be tuned during fabrication of the chalcogenide PCF structure, by controlling, the size of the core, the size of the cladding, and the hole size to pitch ratio of the chalcogenide PCF structure and tuned during exercising of the chalcogenide PCF system with pump laser and signal waves, by changing the wavelength of either the pump laser wave or the signal wave, maximization of nonlinear conversion of the chalcogenide PCF, efficient parametric conversion with low peak power pulses of continuous wave laser sources, and minimization of power penalties and minimization of the need for amplification and regeneration of pulse transmissions over the length of the fiber, based on a dispersion factor.
摘要:
An N port fiber optical switch includes a movable housing having a perimeter and N corners; a plurality N of optical fibers positioned within the housing and inside the perimeter; and a plurality N of actuators, wherein each actuator is positioned on a corresponding corner such that when selectively activated one or more of the actuators urges the movable housing and the plurality of optical fibers to a selected switch position. The switch provides short switching times and high power handling while allowing for a large number of ports and provides the capability of interfacing with and switching between a variable number of ports.